中国成人ICU患者营养评估与监测临床实践指南

中华医学会重症医学分会
Chinese Society of Critical Care Medicine
管向东,中山大学附属第一医院重症医学科,广州 510080,Email:guanxd@mail.sysu.edu.cn 陈德昌,上海交通大学医学院附属瑞金医院重症医学科,上海 200025,Email:chendechangsh@hotmail.com 许媛,清华大学附属北京清华长庚医院,北京 102218,Email:xyuan76@163.com Guan Xiangdong, Department of Critical Care Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China, Email: guanxd@mail.sysu.edu.cn Chen Dechang, Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China, Email: chendechangsh@hotmail.com Xu Yuan, Beijing Tsinghua Changgung Hospital, Beijing 102218, China, Email: xyuan76@163.com
1 背 景

营养评估与营养监测对于认识和理解危重症患者营养治疗面临的异质性挑战非常重要。临床可测量的能够反映患者生理代谢过程、疾病状态,以及对营养干预产生代谢反应的生物标志物和指标,对于满足危重症阶段营养代谢需求以及防止相关生理紊乱、医疗伤害至关重要,是最终实现最佳营养治疗目标的保障。营养治疗是危重疾病期间的一项基础治疗,也是一项复杂的治疗,监测评估贯穿于整个治疗过程。2006年发布的《危重患者营养支持指导意见(草案)》主要基于专家共识及有限的循证证据。为此,中华医学会重症医学分会(Chinese Society of Critical Care Medicine,CSCCM)组织专家制订了《中国成人ICU患者营养评估与监测临床实践指南》(以下简称"指南"),旨在指导和规范我国成人重症监护病房(intensive care unit,ICU)患者营养治疗实践临床诊疗决策,制订合理的营养供给方案,最终实现监测指导下的危重症个体化营养治疗目标。

2 指南的目标人群、使用人群及相关定义 2.1 指南的目标人群:

本指南适用于拟接受或正在接受营养治疗的成人ICU患者。

2.2 指南的使用人群:

各等级医院从事重症患者营养治疗相关工作的临床医师、营养师、护理人员、技术人员及相关教学、科研工作人员。

2.3 相关定义 2.3.1 营养风险(nutritional risk):

营养风险是指现有或潜在与营养有关的导致患者出现不良临床结局(如感染相关并发症发生率增高、住院时间延长、住院费用增加等)的风险[1,2]

2.3.2 营养风险筛查(nutritional risk screening):

营养风险筛查是指使用快速量表在人群中识别存在营养风险的患者[3,4]。筛查的目的是减少营养不良发生及其相关的不良预后。营养风险增加意味着潜在或存在营养不良,也意味着罹患营养不足相关并发症或其他不良结局的风险大,而这些风险可以通过及时和恰当的营养干预加以预防。由于急性应激、慢性饥饿以及自身病理生理的影响[5],导致危重症患者营养风险明显增加[6],因此更应重视营养风险的动态筛查。存在营养风险的患者应进行营养评定并给予个体化营养治疗,尚无营养风险的患者间隔一段时间后亦需再次筛查。

2.3.3 营养评定(nutrition assessment):

营养评定是指临床专业人员通过临床病史、营养摄入史、营养代谢情况、机体各类功能等进行的全面评定,从而为确定营养治疗适应证、制定营养治疗计划,以及预测可能出现的不良反应等提供依据[4]

2.3.4 营养不良(malnutrition):

广义营养不良包含营养不足和营养过剩,指由于营养摄入不足、营养代谢过程受损或者营养摄入过度,对人体组成、生理功能以及临床预后造成不良影响的状态,临床中主要针对营养不足患者。低体质量营养不良诊断标准为体质量指数(body mass index,BMI)<18.5 kg/m2伴一般状况较差[1,7]

3 指南临床问题、推荐意见、证据概述和推荐说明 3.1 临床问题1:

营养风险筛查评分-2002(nutritional risk screening-2002,NRS-2002)与改良危重病营养风险(modified nutrition risk in the critically ill,mNUTRIC)评分量表能否用于重症患者的常规营养风险筛查?

推荐意见:建议重症患者入ICU后48 h内,使用NRS-2002或者危重病营养风险(nutrition risk in the critically ill,NUTRIC)评分(或者mNUTRIC评分)对重症患者进行营养风险筛查。NRS-2002≥5分或者mNUTRIC≥5分时应考虑患者存在高营养风险,应尽快启动全面的营养评估与营养治疗,以改善患者预后(弱推荐,低质量证据)。

推荐依据:营养风险筛查是营养治疗的第一步,营养风险越高,营养治疗的获益越大。目前,重症患者缺乏统一的、高质量证据的营养筛查标准,欧洲肠外肠内营养学会(European Society for Parenteral and Enteral Nutrition,ESPEN)指南将入住ICU超过48 h的重症患者定义为存在营养风险及营养治疗指征[8];美国肠外肠内营养学会(American Society for Parenteral and Enteral Nutrition,ASPEN)指南则推荐入ICU 48 h内使用NRS-2002或者NUTRIC评分进行营养风险筛查[9]

NRS-2002评分是对患者的营养状态、疾病严重程度和年龄3个方面的赋分评估。有研究结果显示,NRS-2002>3分的患者在接受肠内营养(enteral nutrition,EN)或者口服营养制剂后临床结局改善,因此将NRS-2002>3分的患者定义为存在营养风险者[2]。根据一项针对腹部手术患者前瞻性研究的结果[10],ASPEN指南建议将NRS-2002≥5分的重症患者定义为存在营养高风险者。

体质量是NRS-2002评分项目中一项重要的评估指标。然而,由于多种因素,如水肿、多浆膜腔积液、液体治疗、患者基础疾病及营养状态等的影响,单一体质量或者体质量变化指数无法反映营养风险。在NRS-2002评分的评定过程中,需要确定合适的体质量指标来计算BMI,包括实际体质量、理想体质量(ideal body weight,IBW)和校正体质量(adjusted body weight,AdBW),其中男性IBW(kg)=50+〔2.3×(身高cm-152)〕 /2.54,女性IBW(kg)=45.5+〔2.3×(身高cm-152)〕/2.54,AdBW=IBW+0.4×(实际体质量-IBW)[11]。对于肥胖重症患者(实际体质量较IBW超重>30%),推荐使用AdBW。国际上定义BMI<20 kg/m2为营养不良,25.0 kg/m2≤BMI<30 kg/m2为超重,BMI≥30.0 kg/m2为肥胖。

NUTRIC评分是对患者年龄、急性生理学与慢性健康状况评分Ⅱ(acute physiology and chronic health evaluationⅡ,APACHEⅡ)、序贯器官衰竭评分(sequential organ failure assessment,SOFA)、合并症、入住ICU前住院天数及白细胞介素-6(interleukin-6,IL-6)水平进行赋值并进行加和所得,0~5分为低营养风险,6~10分为高营养风险;NUTRIC≥6分的患者死亡风险增加,机械通气时间延长。此外,营养风险评分高的患者比评分低的患者更可能从临床营养干预中获益[12]。近年来,多项研究将NUTRIC评分用于重症患者的营养风险筛查,结果均显示NUTRIC评分高与预后不良相关,提示NUTRIC评分可用于重症患者的营养筛查[13,14,15,16,17,18,19,20,21]

mNUTRIC评分是不包含IL-6的NUTRIC评分,mNUTRIC≥5分为高营养风险,与患者不良预后相关[12]。一项前瞻性研究中比较了mNUTRIC评分单独与联合使用NRS-2002评分在预测重症患者住院病死率上的差异,结果表明,mNUTRIC和NRS-2002评分在预测患者住院病死率方面具有相似效力〔AUC比较,mNUTRIC比NRS-2002比联合:0.693(95%CI为0.638~0.747)比0.645(95%CI为0.587~0.703)比0.666(95%CI为0.608~0.723)〕[22]

证据说明:一项系统评价纳入4项关于NRS-2002评分的观察性研究(918例)[14,22,23,24],结果提示,与NRS-2002<5分的患者相比,NRS-2002≥5分的患者总住院时间更长〔均数差(mean difference,MD)=2.82,95%CI为0.12~5.52,P=0.04〕,病死率更高〔优势比(odds ratio,OR)=2.13,95%CI为1.60~2.83,P<0.001〕。另一项系统评价纳入19项关于mNUTRIC评分的观察性研究(4 288例)[16,17,20,22,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38],结果显示,与mNUTRIC<5分的重症患者相比,mNUTRIC≥5分的患者ICU住院时间更长(MD=2.37,95%CI为1.82~2.92,I2=0%,P=0.009),病死率更高(OR=5.00,95%CI为4.28~5.83,P<0.001)。

3.2 临床问题2:

主观整体评估量表(subjective global assessment,SGA)可否用于危重症患者的常规营养评定?

推荐意见:建议使用SGA作为危重症患者营养评定的量表工具(弱推荐,低质量证据)。

推荐依据:SGA主要包含患者病史〔体质量变化、摄食变化、胃肠道症状(gastrointestinal symptoms,GIS)、功能容量和代谢需求等〕和体格检查(皮下脂肪丢失、肌肉丢失、水肿/积液)两部分内容。根据评分分为3个等级:A级,营养良好;B级,中度营养不良;C级,严重营养不良。SGA最初在外科患者中得到验证,后被推广并广泛用于评估住院患者的营养状态[39]。近年来,越来越多针对重症患者的研究显示,根据SGA诊断为营养不良的患者,其住院死亡风险增加、ICU住院时间延长,以及院内感染风险增加[40,41,42]。此外,研究显示SGA在诊断机械通气患者营养不良方面具有良好的可重复性与可靠性[43]

其他常用的营养评定量表包括微型营养评定(mini-nutritional assessment,MNA)、营养不良通用筛查工具(malnutrition universal screening tool,MUST)和营养不良筛查工具(malnutrition screening tool,MST),但以上3种评分多用于老年和社区营养不良评估[44,45],在重症疾病中的应用研究相对缺乏。

证据说明:一项系统综述比较了SGA与MNA和其他营养评定工具预测ICU患者不良结局方面的疗效,结果显示,不同工具评估的营养不良与ICU住院时间、ICU再住院率、院内感染以及住院死亡风险增加独立相关,SGA诊断的营养不良与院内感染发生率增加(次/人:4.5比0.6,P=0.001)、ICU再住院(调整OR=2.27,95%CI为1.08~4.80,P<0.05)以及出院后需要照护相关;MNA诊断的营养不良与不良临床结局并不相关;MUST诊断的营养不良(在研究中有轻度的偏倚风险)与ICU转出后1年病死率降低相关(调整OR=0.01,95%CI为0.01~0.60,P=0.01),但与其他术后并发症不相关[46]。本指南制定工作组制作的系统评价共纳入10项队列研究[18,47,48,49,50,51,52,53,54,55],其中4项研究(464例)[50,53,54,55]报道了不同分级的SGA评分与ICU病死率之间的关联,与营养良好(GSA A级)相比,营养不良(SGA B、C级)死亡风险显著增加〔相对危险度(relative risk,RR)=2.45,95%CI为1.82~3.29,P<0.001〕。

3.3 临床问题3:

血浆蛋白〔白蛋白(albumin,ALB)、前白蛋白(prealbumin,PAB)〕能否作为重症患者营养筛查与评定的参考指标?

推荐意见(1):建议ALB或PAB用于重症患者营养风险筛查(弱推荐,低质量证据)。

推荐意见(2):不建议ALB或PAB用于重症患者急性炎症早期营养状态评定(弱推荐,极低质量证据)。

推荐依据:血浆蛋白如ALB、PAB、转铁蛋白、视黄醇结合蛋白等主要由肝细胞合成,是蛋白质代谢相关的重要指标。血浆蛋白的半衰期差异较大,如ALB半衰期约为21 d,PAB、转铁蛋白及视黄醇结合蛋白半衰期分别为2~3 d、8 d及12~14 h[56]。重症患者急性炎症期自噬代谢及蛋白分解增加,合成抵抗,在未干预情况下血浆ALB、PAB、转铁蛋白等水平往往降低,同时与急性炎症反应相关的蛋白〔如C-反应蛋白(C-reactive protein,CRP)〕合成明显增加。近期2项观察性研究表明,重症患者血浆ALB、PAB水平的降低与高营养风险相关[57,58]。一项国际多中心随机对照试验(randomized controlled trial,RCT)的二次分析显示,与血浆蛋白水平正常的患者相比,入院时低ALB组和低PAB组住院患者180 d病死率均显著增加,证实ALB、PAB水平在预测营养风险及不良预后中具有良好的价值[59,60]。因此,血浆蛋白可被用作营养风险筛查指标。

由于急性期炎症反应导致血管通透性增加,血浆蛋白重新分布,大量血浆蛋白从血管内渗漏到组织间隙,因此上述血浆蛋白的变化与营养状态、营养补充的效果不完全一致,不能作为反映重症患者急性早期营养状态的准确、独立指标[61]。在使用PAB监测营养支持效果的研究中,早期血清PAB仅与炎症相关,并不反映能量与蛋白质供给的充分性[62,63]。因此,本指南与ASPEN指南一致,血浆蛋白(ALB、PAB)作为急性期营养状态评定标志物的证据尚不充分,故不建议将其用于重症患者急性早期的营养状态评定[9,64]

证据说明:一项针对重症COVID-19患者的回顾性队列研究(408例)发现,进行营养风险筛查时,PAB降低(<150 mg/L)与较高的营养风险(NRS-2002≥4分)相关(OR=2.46,95%CI为1.62~3.72)[57]。一项前瞻性队列研究(261例)显示,与低营养风险组(mNUTRIC评分0~4分)相比,高营养风险组(mNUTRIC评分5~9分)患者的ALB水平〔g/L:28.55(23.56,33.15)比31.30(29.17,35.35)〕和PAB水平〔mg/L:119.50(84.36,158.58)比155.20(116.16,198.14)〕降低[58]。一项对国际多中心RCT的二次分析显示,不同ALB水平比较(1 389例),入院前低ALB组患者的180 d病死率显著增加〔32.4%(219/676)比22.7%(162/713),校正后风险比(hazard ratio,HR)=1.4,95%CI为1.11~1.77,P=0.005〕 [59];不同PAB水平比较(517例),低PAB组患者的180 d病死率亦显著增加〔37.6%(115/306)比22.3%(47/211),校正后HR=1.59,95%CI为1.11~2.28,P=0.011〕[60]

一项回顾性队列研究(154例)显示,接受EN治疗的ICU患者住院期间PAB变化与CRP呈负相关(r=-0.554),而不同能量供给患者组间PAB变化无显著差异〔≥60%能量供给目标组比<60%能量供给目标组:(2.74±9.50)mg/dL比(2.48±9.36)mg/dL,P=0.86〕[62]。另一项回顾性队列分析(252例)显示,ALB水平与3种炎症指标呈负相关(CRP:ρ=-0.24,白细胞计数:ρ=-0.15,中性粒细胞/淋巴细胞比值:ρ=-0.26),而ALB和PAB水平变化与能量及蛋白供给量无明显相关性(ALB与能量供给不足:ρ=0.02,P=0.74;ALB与蛋白供给不足:ρ=0.07,P=0.31;PAB与能量供给不足:ρ=-0.11,P=0.73;PAB与蛋白供给不足:ρ=-0.40,P=0.20)[63]

3.4 临床问题4:

骨骼肌或瘦体组织含量(lean body mass,LBM)能否用于重症患者的营养风险筛查及营养评定?

推荐意见:推荐应用骨骼肌或LBM进行重症患者的营养风险筛查及营养评定(强推荐,中等质量证据)。

推荐依据:瘦体组织〔无脂体质量(fat-free mass,FFM)〕是人体重要的组成成分,包括骨骼肌、内脏以及结缔组织,代表人体最大的蛋白质储存库。LBM和骨骼肌含量受蛋白质分解代谢与合成代谢影响[65,66]。重症患者由于全身炎症反应、神经内分泌紊乱、活动减少、营养供给不足、糖皮质激素应用、高龄等因素,蛋白质分解代谢增强,合成代谢减弱[67,68],导致骨骼肌含量下降[66,69,70,71]。骨骼肌减少症指骨骼肌质量(skeletal muscle mass,SMM)、力量和(或)功能的降低而引起的综合征[72],是重症患者常见的合并症。

研究表明,重症患者入住ICU 10 d后,骨骼肌含量降低17%~30%[66,73],LBM/骨骼肌含量的降低可能进一步导致重症患者出现不良预后[65,66,74,75,76],如病死率增加,机械通气时间和ICU住院时间延长,合并多器官功能障碍和ICU获得性虚弱等。合理的营养支持治疗与早期运动有助于维持和增加患者的LBM/骨骼肌含量[77,78]。一项系统评价结果表明,LBM/骨骼肌含量变化与患者营养风险及营养不良的发生相关,因此,建议应用LBM/骨骼肌含量对重症患者进行营养风险筛查及营养评定。

证据说明:在营养风险筛查方面,一篇纳入8项队列研究(458例)的系统评价结果显示,采用生物电阻抗分析(bioelectric impedance analysis,BIA)测量相位角(phase angle,PhA),可用于预测高营养风险(mNUTRIC≥5分),受试者工作特征曲线下面积(area under the receiver operator characteristic curve,AUROC)为0.79(95%CI为0.59~0.83),当PhA的截断值为5.50时,预测敏感度为62.3%,特异度为65.0%[74]。CT测量咬肌横截面积(cross-sectional area,CSA)预测高营养风险〔预后营养指数(prognostic nutritional index,PNI)<36.083〕的AUROC为0.60(95%CI为0.41~0.80);CT测量第三腰椎平面的骨骼肌CSA预测高营养风险的AUROC为0.65(95%CI为0.54~0.77)[79]。超声测量股四头肌肌层最大压缩厚度(maximal compressed quadriceps femoris muscle thickness,mcQFMT)预测高营养风险(mNUTRIC≥5分)的AUROC为0.68,当mcQFMT截断值为1.69 cm时,敏感度为61%,特异度为71%;当以mcQFMT预测更高的营养风险(mNUTRIC≥6分)时,AUROC为0.75,预测效率显著提高,当mcQFMT截断值为1.36 cm时,敏感度为79%,特异度为70%。因此,超声测量的mcQFMT是预测营养风险的独立危险因素,与高营养风险显著相关(mNUTRIC≥5分:OR=0.26,95%CI为0.08~0.80;mNUTRIC≥6分:OR=0.14,95%CI为0.03~0.60)[80]

在营养评定方面,4项观察性研究(190例)显示,BIA测定的瘦体组织质量能有效预测重度营养不良(BMI≤16 kg/m2;AUROC=0.954,95%CI为0.840~0.995),截断值为0.24时,敏感度为80%,特异度为91%[81]。应用SGA分级对营养不良患者进行分组后,各组内肌肉含量降低(BIA法测得的PhA<50)的患者数量存在显著差异(P=0.042)[82]。2项研究显示,超声测量拇内收肌厚度(thickness of adductor pollicis muscle,TAPM)预测营养不良(SGA B、C级)的AUROC(95%CI)分别为0.82(0.73~0.91)及0.61(0.46~0.76),TAPM<15 mm与营养不良相关(RR=1.63,95%CI为1.06~2.50)[50,83]

3.5 临床问题5:

评估重症患者骨骼肌或LBM的可靠方法有哪些?

推荐意见:建议采用超声法、BIA法对重症患者骨骼肌或LBM进行实时动态个体化评估(弱推荐,低质量证据)。

推荐依据:CT/磁共振成像(magnetic resonance imaging,MRI)检测第三腰椎平面骨骼肌CSA是评估重症患者骨骼肌含量的可靠指标[84],然而,由于存在辐射和转运风险等原因,CT和MRI无法作为常规监测重症患者骨骼肌含量的手段。

超声是在重症患者床旁实时使用的无创性检查手段,具有较高的临床普及率。在髂前上棘与髌骨上缘连线的中点或下1/3处,以超声测量股四头肌肌层厚度(quadriceps muscle layer thickness,QMLT)或股直肌横截面积(rectus femoris muscle area,RFMA)是评估重症患者骨骼肌含量最常使用的方法[85,86,87,88,89,90,91,92,93]。需要注意的是,重症患者的年龄、性别、基础体质量[89]及组织液体潴留等因素均可影响超声对肌肉质量的测量[94]。因此,使用超声法个体化的动态评估重症患者骨骼肌含量,应遵循规范的测量方法、遵守标准化的测量流程,从而提高测量的准确性及一致性[95]

BIA是一种快速、无创、适合床旁使用的人体成分测量方法[96],分为单频、多频BIA设备和生物电阻抗光谱。利用BIA技术测量身体电阻、容抗以及阻抗,然后利用经验回归方程式计算人体成分[97],其中,FFM、LBM、SMM可用于反映人体骨骼肌含量/LBM[98]。然而,BIA参考数值来自体质量和水合状态正常的健康人群的测量数据及其导出的计算方程,可能不适用于存在液体过负荷、多浆膜腔积液或肥胖的患者[97,99],因此,在重症患者中应用BIA时需注意测量的局限性。PhA是BIA技术的一项衍生指标,可以直接从BIA测量的原始数据中计算获得,可反映细胞功能及LBM。PhA受体液分布影响相对较小,高PhA反映了更完整的细胞膜和瘦体组织质量[98]

证据说明:在超声评估骨骼肌含量/LBM方面,经过系统检索,结果显示,6项与该主题相关的前瞻性观察研究(366例)[86,88,89,91,92,100],未发现与该主题相关的系统评价。6项前瞻性研究结果显示,超声测量的组间及组内重复性较好,操作者间组内相关系数(intraclass correlation coefficient,ICC)的中位数(极差)为0.95(0.76,0.99);操作者内ICC为0.98(0.74,1.00)。在比较CT测量骨骼肌含量的一致性时,6项观察性研究(458例)显示,超声测量的QMLT[86,87,89,90]和RFMA[87,93]与CT测量的第三腰椎平面骨骼肌CSA具有显著相关性(与QMLT的相关系数r为0.45、0.70,与RMFA的相关系数ρ为0.48)[87]。超声与CT评估同一部位骨骼肌含量的偏差较小〔Bland-Altman分析显示,两种方法评估同一部位偏差的95%一致性界限为(-0.34,0.36)cm[94]和(-0.356,0.550)cm〕[88]。当采用CT测量的第三腰椎骨骼肌面积减少作为判断肌肉含量降低的金标准时,超声测量的QMLT用于预测肌肉含量减低的AUROC(95%CI)为0.79(0.65~0.92)[86];QMLT预测低骨骼肌指数的AUROC(95%CI)为0.84(0.74~0.94),RFMA预测低骨骼肌指数的AUROC(95%CI)为0.77(0.65~0.88)[87]

在BIA评估骨骼肌含量/LBM方面,经过系统检索,结果显示,5项与该主题相关的前瞻性观察研究(388例)[82,101,102,103,104]未发现相关系统评价。一项前瞻性观察研究显示,BIA测量SMM及PhA的ICC(95%CI)分别为0.873(0.697~0.950)及0.910(0.775~0.965)[82]。在比较与CT法测量骨骼肌含量数值的一致性时,4项前瞻性观察研究(366例)[101,102,103,104]显示,SMM与CT测得的第三腰椎水平骨骼肌CSA显著相关,其中r〔中位数(极差)〕为0.651(0.584,0.834)[101,102,103];PhA与CT测得的第三腰椎水平骨骼肌面积及肌肉密度存在相关性(与骨骼肌面积间r为0.542、0.589,与肌肉密度间r为0.701、0.776)[101,103]。当采用CT测量的第三腰椎骨骼肌面积减少作为判断肌肉含量降低的金标准时,PhA预测肌肉含量降低的AUROC为0.67;整合年龄、性别、BMI及PhA得到的Logistic回归模型预测肌肉含量降低的AUROC为0.78[104]

3.6 临床问题6:

如何临床判断EN喂养不耐受(feeding intolerance,FI),基于EN喂养量还是即时GIS?

推荐意见:建议EN FI判定为喂养过程中出现以高胃残余量(high gastric residual volume,HGRV)为主症状的2项及以上GIS;或连续72 h喂养量<20 kcal·kg-1·d-1(弱推荐,低质量证据)。

推荐依据:FI是监测EN顺利实施的核心指标,受到最新国际主流营养指南[8,9]和专家共识[105,106,107]推荐。然而,FI至今尚无统一的临床客观标准。2012年欧洲危重病学会(European Society of Intensive Care Medicine,ESICM)腹腔问题工作组的急性胃肠损伤(acute gastrointestinal injury,AGI)共识首次推荐将能够接受的喂养量连续72 h<20 kcal·kg-1·d-1作为FI的临床判定标准[108]。但FI仅靠喂养量定义,缺乏临床症状,不利于早期判断与处理。

FI通常表现为HGRV(36.11%)、呕吐(18.68%)、肠鸣音消失(15.54%)、腹胀(12.19%)和腹泻(5.24%)等GIS[109]。Blaser等[110]的一项系统综述表明,HGRV(单独或合并呕吐、腹泻和腹胀)是大多数研究判断FI的方法,但其阈值差异较大(75~500 mL)。最近一项系统评价结果表明,HGRV不能很好地反映胃排空障碍,导致与FI发病率无显著相关性[111]。这一结论不排除受到胃残余量(gastric residual volume,GRV)测量误差和阈值标准的影响。近年来,超声技术的发展为准确评估GRV提供了新的手段。有研究显示,三维超声技术测量GRV与MRI测量结果有较强的一致性,三维超声技术测量GRV可以有效评估胃轻瘫患者胃排空能力[112,113]

与HGRV相比,基于<20 kcal·kg-1·d-1喂养量的FI定义有明确的阈值标准,但不完全适用于重症患者的EN管理:在相同喂养量标准下,不同疾病类型患者的相对喂养不达标程度差异仍较大,进而影响了FI相关死亡风险等评估。例如,外科患者的比例会显著影响ICU患者FI的全因死亡风险。此外,不同疾病阶段所需标准营养量也不同,如重症急性早期EN喂养量常难以达到<20 kcal·kg-1·d-1。因此,以喂养量判断FI时还应根据与疾病类型和疾病阶段相适应的实际可接受喂养不达标程度来调整判定时机和喂养量阈值。基于喂养量定义FI需要72 h的诊断时间窗。根据最近一项荟萃分析的结果,建议以HGRV为主症状的2项及以上GIS(即基于GIS的FI定义)判断FI,或可兼顾72 h的诊断时间窗限制、预后风险评估和发病率[109]。考虑到基于喂养量的FI在医院的高流行率及其与全因死亡风险的相关性,可根据临床实际单独或者联合使用以上两种方法判断FI。

证据说明:本系统评价共纳入26项以重症患者为主体的观察性队列研究(10项前瞻性研究[114,115,116,117,118,119,120,121,122,123]和16项回顾性研究[124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139],25 189例),结果显示,重症患者中FI总发生率达0.40(95%CI为0.34~0.46),与多数以患者为中心的不良预后显著相关,其中ICU全因死亡风险OR值达1.99(95%CI为1.69~2.35);随着外科患者占比增加,FI的ICU全因死亡风险有增加趋势(外科患者占比0%:OR=1.57,95%CI为0.33~7.61;外科患者占比15%~20%:OR=1.63,95%CI为1.10~2.41;外科患者占比>25%:OR=2.18,95%CI为1.41~3.37);喂养不达标阈值为50%时,FI的ICU全因死亡风险最高(OR=5.24,95%CI为2.55~10.74);阈值为80%时,ICU全因死亡风险OR值降为1.87(95%CI为1.08~3.24);HGRV的ICU全因死亡风险OR值为2.31(95%CI为1.63~3.27),而其余单个GIS与ICU全因死亡风险相关性不显著;随着用以判定FI的最少GIS数目的增加,FI的ICU全因死亡风险随之增加(≥1个GIS:OR=2.29,95%CI为1.98~2.65;≥2个GIS:OR=2.61,95%CI为1.07~6.37;≥3个GIS:OR=4.49,95%CI为1.87~10.83),而FI的发生率随之降低(≥1个GIS:0.39,95%CI为0.33~0.45;≥2个GIS:0.26,95%CI为0.09~0.44;≥3个GIS:0.05,95%CI为0.03~0.12);基于喂养量的FI总体发生率为0.46(95%CI为0.27~0.65);基于喂养量的FI与医院全因死亡风险相关性差异具有统计学意义(OR=1.90,95%CI为1.03~3.50),高于基于GIS的FI的医院全因死亡风险(OR=1.48,95%CI为0.88~2.50)。

3.7 临床问题7:

胃肠超声能否预测重症患者EN FI?

推荐意见:对于进行EN的重症患者,建议应用胃肠道超声预测FI(弱推荐,低质量证据)。

推荐依据:重症患者FI发生率高达30.5%~67.5%,与患者不良结局相关[140]。HGRV及呕吐、肠鸣音消失、腹胀、腹泻等GIS是目前使用较多的评价FI的指标,但GRV诊断阈值存在显著差异,范围为75~500 mL,且抽吸法测量GRV难以做到操作标准化,其客观准确性受胃管位置、粗细、患者体位等诸多因素影响,不再被国际上营养指南常规推荐[110,111]。此外,荟萃分析显示单个GIS与ICU全因死亡风险无显著相关性。

胃肠超声能够评估胃窦面积、胃窦运动指数、肠道结构及动力变化,并可通过胃窦CSA客观反映GRV。初步研究显示,超声测量胃窦CSA在重症FI患者的评价及预测中具有很好的应用前景。研究显示,超声测量CSA能较好地反映GRV,可靠性高于抽吸法(98%比85%,P=0.016)[141,142,143]。超声在不同体位下测量的CSA与CT和抽吸方法测量的GRV都有较好的相关性,FI患者的胃窦CSA在半坐位、平卧位及右侧卧位时显著高于喂养耐受组,以CSA≥3.917、3.395和4.402 cm2为阈值,预测FI的敏感度分别为92.0%、69.6%、92.3%,特异度分别为69.2%、92.3%、71.4%[144]。胃窦CSA预测FI的AUROC为0.699,FI的最佳截断值为7.092 cm2时,预测敏感度为72.7%,特异度为75.5%[145]。EN启动后,胃窦回声强度相关指标预测FI的价值也较高,FI患者第50个百分位数(ED50)、第50个百分位数(ED85)和灰度分布平均值(EDmean)均高于耐受组(ED50:67.8比56.1,P=0.02;ED85:85.6比71.2,P=0.01;EDmean:70.3比57.6,P=0.01)[139]。超声检测肠壁厚度、肠道环形皱襞及蠕动也可用于预测FI[146]

因此,现有研究初步揭示了胃肠道超声对FI的预测价值,虽然研究证据质量不高,但鉴于目前缺乏更好的预测手段,以及胃肠道超声对于胃肠道结构、功能和病理状态的直观可视化呈现,将其作为辅助预测FI的重要手段初步显示有良好的应用前景。

证据说明:本系统评价共纳入4项队列研究(3项前瞻性研究[139,145,146]和1项回顾性研究[144],351例)。一项多中心前瞻性观察研究(150例)[145]显示,胃窦CSA预测接受EN的重症患者FI的AUROC为0.699(95%CI为0.514~0.883),其预测FI的最佳截断值为7.092 cm2,敏感度为72.7%,特异度为75.5%。一项回顾性分析(42例)[143]的结果显示,重症FI患者在半坐位、平卧位及右侧卧位时的胃窦CSA分别为(8.53±4.07)、(5.15±2.75)及(10.32±4.06)cm2,喂养耐受者在相应体位时的胃窦CSA分别为(4.60±2.76)、(2.61±1.32)及(4.95±3.20)cm2。FI患者3种体位胃窦CSA均显著高于喂养耐受组(P<0.005)。ROC分析显示,重症患者在半坐位检测时,胃窦CSA预测FI的AUROC为0.815,以≥3.917 cm2为截点时的敏感度为92.0%、特异度为69.2%;在平卧位检测时,胃窦CSA预测FI的AUROC为0.833,以≥3.395 cm2为截点时的敏感度为69.6%、特异度为92.3%;在右侧卧位检测时,胃窦CSA预测FI的AUROC为0.849,以≥4.402 cm2为截点时的敏感度为92.3%、特异度为71.4%。除胃窦CSA可以预测重症患者FI外,胃窦壁超声回声强度亦可以预测重症患者FI的发生。在一项前瞻性观察研究(43例)[139]中,作者根据直方图分析,将灰度分布的ED50、ED85和EDmean分别反映胃窦回声强度。结果显示,FI患者在EN开始时的ED50(67.8比56.1,P=0.02)、ED85(85.6比71.2,P=0.01)和EDmean(70.3比57.6,P=0.01)均显著高于喂养耐受组患者。在EN开始时,ED50预测FI的截断值为63.0(特异度:87.5%,敏感度:69.2%),AUC为0.76(95%CI为0.57~0.94,P=0.006)。ED85预测FI的截断值为77.5(特异度:75.0%,敏感度:69.2%),AUC为0.75(95%CI为0.57~0.93,P=0.006)。EDmean预测FI的截断值为65.9(特异度:87.5%,敏感度:69.2%),AUC为0.76(95%CI为0.59~0.94,P=0.004)。研究显示,肠道超声亦可以用于预测重症患者FI。一项前瞻性观察研究(116例)[146]显示,肠道直径预测FI的AUROC为0.60(0.48~0.71),肠道环形皱襞预测FI的AUROC为0.76(0.67~0.85),肠壁厚度预测FI的AUROC为0.71(0.62~0.80),肠壁分层预测FI的AUROC为0.77(0.69~0.86),肠蠕动预测FI的AUROC为0.78(0.68~0.88)。

3.8 临床问题8:

监测腹内压(intra-abdominal pressure,IAP)能否预测重症患者EN FI?

推荐意见:不建议常规监测IAP来预测重症患者EN FI(弱推荐,极低质量证据)。

推荐依据:重症患者的腹腔高压(intra-abdominal hypertension,IAH)发生率高达32.1%~81.0%,多项研究表明,IAP升高是预测重症患者预后的独立危险因素[147,148,149]。IAP升高与胃肠功能障碍密切相关[150,151,152],也会影响重症患者EN的有效实施。2018年ESPEN指南建议存在IAH的患者应减慢EN速度,如果IAP进一步升高应暂停EN[8]。国内重症患者早期EN临床实践专家共识建议,IAP>16 mmHg(1 mmHg≈0.133 kPa)应减慢EN速度,IAP>20 mmHg应暂停EN[105]。这些推荐意见实质是建立在监测IAP能够预测FI的基础上,提示在EN过程中进行IAP监测的重要性。

然而,IAP对喂养耐受性影响的差异较大。研究显示,APACHEⅡ评分更高的患者在较低IAP时出现FI[114],提示不同危重度的患者IAP对EN的影响程度不同,难以统一标准。此外,Bordejé等[153]的研究表明,FI与每日最大IAP更相关,但与每日平均IAP没有明显关系,提示监测指标的选择尚未统一。另外,对于无IAH的患者而言,在早期EN过程中常规监测IAP能否预测FI发生的研究较少,研究结果上也存在矛盾[154,155]

因此,尽管IAP升高理论上可以影响胃肠功能及FI的发生,但目前尚未统一IAP的监测指标、不同人群的参考阈值,而且现有研究未能证实常规监测IAP指导EN能够获益;加之监测IAP的有创性和费效考虑,笔者不建议常规监测IAP来预测重症患者的FI发生。

证据说明:一项较早的研究显示,IAP结合APACHEⅡ评分可以预测重症患者EN的耐受性,APACHEⅡ评分越高的患者在较低IAP时出现FI,而APACHEⅡ评分越低的患者在较高IAP时存在FI[114]。此外,Bordejé等[153]的研究表明,与喂养耐受患者比较,FI患者每日最大IAP更高(mmHg:19.4±4.8比16.8±4.6,P<0.001),但每日平均IAP在有无FI患者组间无显著差异(mmHg:14.8±3.7比14.8±4.1,P=0.801)。

针对"无IAH患者,在早期EN过程中常规监测IAP能否预测FI发生"这一问题,系统评价共纳入2篇观察性研究(260例)[154,155],结果显示,有效性方面,与EN过程中未监测IAP的患者相比,监测IAP的患者EN不耐受的发生率未明显下降(RR=1.0,95%CI为0.82~1.22,I2=91%,P=1.00)。EN喂养过程中EN耐受组与不耐受组IAP比较无明显差异(MD=-0.32,95%CI为-1.24~0.61,I2=76%,P=0.5),ICU病死率亦无明显差异(OR=0.73,95%CI为0.43~1.25,I2=89%,P=0.26)。

3.9 临床问题9:

重症患者营养治疗期间是否需要进行能量代谢评价?

推荐意见:建议重症患者营养治疗期间采用间接测热法(indirect calorimetry,IC)测定实际能量消耗并指导能量供给(弱推荐,低质量证据)。

推荐依据:能量缺乏或摄入不足可造成不同程度的蛋白质消耗,影响器官的结构和功能,进而影响患者预后。因此,准确地测定患者实际能量消耗指导热量供给,可以防止过度喂养或喂养不足。一些能量代谢预测公式被用于估算机体静息能量消耗(resting energy expenditure,REE)。然而这些预测公式存在对REE评估过高或不足的情况[156,157],且不能反映患者对代谢底物的动态需求,已被荟萃分析证实其缺乏预测价值[158]。采用IC测定患者机体REE是判断患者能量需要量的理想方法,可用于指导重症患者的热量供给。近期的一项荟萃分析结果显示,与预测公式比较,基于IC-REE的热量供给策略可改善重症患者的短期病死率,而不增加住院时间、机械通气时间及并发症[159]

在患者病情允许时,应及早测量REE并参考代谢与病情特征进行评判。早期热量的目标应为所测量REE的70%~100%,以避免过度喂养。目前基于证据的理想IC测量频率尚未确定。在ICU入院后24~48 h内的复苏时期,较高的O2浓度和对机械通气的连续调节可能会混淆O2和CO2的测量结果,因此不建议在此期间使用IC[160]。一些临床专家建议,对于病情开始稳定〔血流动力学和机械通气参数稳定,吸入氧浓度(fraction of inspired oxygen,FiO2)<0.6,呼气末正压(positive end expiratory pressure,PEEP)<12 mmHg〕的患者可开始IC监测,应每2~3天或每周2~3次重复测量REE;临床病情变化时应再次测量[161]。REE测量30 min显示出较高的准确性[162]。同时,代谢车上可同时测定呼吸熵(respiratory quotient,RQ),其适宜范围在0.85~1.00。RQ<0.85和RQ>1.00在预测机械通气患者喂养不足和过度喂养方面敏感度较低(分别为55.8%和38.5%),因此不应将其用于指导能量供给。RQ>1.00明显增加了呼吸频率以及对指令通气的需求,并可能需要调整营养治疗方案[163]。因此,基于CO2测量计算能量消耗(EE-VCO2)的方法已被提出作为IC的替代方法。

当无条件实施IC时,可以考虑基于CO2生成量来计算患者的能量消耗,作为IC的替代方法。部分呼吸机可提供持续的二氧化碳排出量(carbon dioxide output,VCO2),从而获得基于VCO2的能量消耗测定。2018年ESPEN指南推荐,如不能开展IC,相比基于体质量的热量的计算公式,从呼吸机中获取的VCO2可对能量消耗进行更好地估计[8]

证据说明:2021年发表的一项系统评价[159]纳入8篇RCT(991例)[164,165,166,167,168,169,170],结果显示,与预测公式比较,使用基于IC-REE的策略可以显著降低短期(定义为ICU或住院期间或入院后90 d内随访的最长观察期)病死率(RR=0.77,95%CI为0.60~0.98,I2=3%,P=0.03),而不延长机械通气时间(MD=0.61,95%CI为-1.08~2.29,I2=72%,P=0.48)、ICU住院时间(MD=0.32,95%CI为-2.51~3.16,I2=73%,P=0.68)或者总住院时间(MD=0.30,95%CI为-3.23~3.83,I2=0%,P=0.87);而肺炎(RR=1.01,95%CI为0.58~1.75,I2=60%,P=0.98)、菌血症(RR=1.74,95%CI为0.90~3.40,I2=0%,P=0.78)、尿路感染(RR=1.00,95%CI为0.49~9.65,I2=48%,P=0.17)和腹腔感染(RR=1.03,95%CI为0.25~3.90,I2=0%,P=1.00)等不良事件发生率差异无统计学意义。

3.10 临床问题10:

重症患者营养治疗期间是否需要监测血浆PAB水平?

推荐意见:建议重症患者营养治疗期间监测血浆PAB水平,用于评价代谢状态与营养治疗的反应(弱推荐,极低质量证据)。

推荐依据:PAB亦称转甲状腺素,是肝脏合成的一种急性期蛋白,已被用作营养相关标志物。系统评价结果提示,血浆PAB水平下降与病情进展以及病死率增加相关[171,172]。与ALB和转铁蛋白相比,PAB具有半衰期短(2.5 d)、不受机体水合状态影响的特点。此外,PAB测量简单,使其可能成为营养治疗期间监测代谢状态快速变化的理想选择[173,174]。一项2020年发表的荟萃分析提示,营养治疗后ALB和PAB水平更高,但不改变全因病死率、呼吸道感染、尿路感染和营养相关并发症的风险[175]。需要注意的是,在ICU中,单纯的低血浆PAB可能受到炎症反应影响,不能准确地反映营养状态[176]。即使已启动营养治疗,PAB水平仍会因炎症状态下降[177]。另一方面,患者即使未获得足够的营养或体质量仍继续下降,PAB水平也会随着炎症反应的降低而恢复[178]。相比之下,PAB的动态变化有助于营养治疗反应性的评价。在急性期,每周测量1次PAB联合CRP的水平似乎是较全面认识代谢状况的"窗口"。在炎症指标稳定时,PAB水平可反映营养供给是否充分。

证据说明:一项基于COVID-19重症患者的系统评价纳入19篇观察性研究(4 616例),结果显示:与轻症或存活患者相比,COVID-19重症和未存活患者的血清PAB水平显著降低〔标准化均数差(standardized mean difference,SMD)=-0.92,95%CI为-1.10~-0.74,I2=77.9%,P<0.001〕,这一结论在进一步的亚组分析中得到证实[171]。另一项荟萃分析纳入4项RCT(429例)提示,与单独EN相比,肠外营养(parenteral nutrition,PN)联合EN使用后PAB水平更高(MD=-0.02,95%CI为0.00~0.04,I2=79.7%,P=0.036),但不改变全因病死率、呼吸道感染、尿路感染和营养相关并发症的风险[175]

3.11 临床问题11:

重症患者营养治疗期间是否需要进行尿素/肌酐比值(urea/creatinine ratio,UCR)监测?

推荐意见:建议重症患者营养治疗期间进行UCR监测(弱推荐,低质量证据)。

推荐依据:近年来,临床认识到UCR的升高可反映持续性危重疾病和危重疾病相关的分解代谢[179,180]。UCR升高一方面可能表明患者肌肉蛋白分解导致机体尿素循环的活性增加,进而导致氨基酸分解代谢增高;另一方面,UCR升高可能还意味着血清肌酐水平下降,后者是骨骼肌磷酸肌酸的分解产物。因此,UCR反映了机体氮的释放和肌肉质量的减少。与UCR升高相关的发病率增加也可能反映了高氨血症的病理影响。已知血清氨水平升高会降低肌肉功能和肌肉结构的质量,同时增加肌肉自噬。氨对线粒体功能有不利影响,导致三羧酸循环中间体耗尽并降低三磷酸腺苷(adenosine triphosphate,ATP)可用性[181,182]。几项研究结果提示,UCR升高或增加可能反映与严重疾病相关的肌肉丧失[179,183,184]

已证实重症患者肌肉蛋白丢失与各种不良后果相关[185,186,187]。几项研究显示,UCR升高与器官功能受损、感染性并发症、ICU住院时间或总住院时间延长[188],甚至病死率增加显著相关[179,183,184]。因此,UCR作为一项简单、经济且准确的分解代谢标志物应用于存在高分解代谢的ICU患者中,极大地方便了其治疗期间肌肉蛋白的动态监测。

需要注意的是,UCR虽然作为机体分解代谢极具潜力的标志物,但其结果受到患者肾功能损害、疾病状态以及治疗干预措施(如大剂量谷氨酰胺补充)等[189]的直接或间接影响。在这些情况下,UCR的动态监测更具有临床意义。此外,UCR应该在更广泛的重症人群和个体水平上得到进一步的评估。

证据说明:经过系统检索,发现6项与该主题相关的原始研究(36 882例),未发现与主题相关的系统评价。一项研究显示,在1 173例至少存活至第10天的创伤患者中,UCR的时间趋势存在显著差异。尽管所有患者的UCR最初都增加,但与较早出院的患者(<10 d)相比(UCR从61增加至97),第10天仍在ICU的患者UCR(从62增加至141)上升幅度更大(133%比59%,P<0.01)。该研究对美国重症监护医学信息数据库-Ⅲ(Medical Information Mart for Intensive Care-Ⅲ,MIMIC-Ⅲ)的创伤队列(2 876例)分析中进一步证实了UCR变化的可重复性[179]。同样的,在一项回顾性研究中(22 868例),研究者发现从入ICU第4天起,与无持续性危重症状态患者相比,持续性危重症状态患者的UCR增加更显著(均P<0.05),且住院病死率更高〔25%(163/643)比16%(3 665/22 225),P<0.001〕[180]。这一结论支持了Iwashyna等[190]早期的研究结果,即建议将特定住院时间(≥10 d或<10 d)确定为患者预后更差且入院疾病严重程度不再预测的过渡点。

UCR的增加与肌肉质量的逐渐减少同步发生。Volbeda等[191]检查了248例ICU患者UCR的时间过程和趋势,发现UCR在入院后的前30 d内快速上升而没有任何下降,强调了关注ICU患者持续的分解代谢状态。Haines等[179]在53例具有连续CT扫描检测数据的危重症患者中,通过对L3和L4腰大肌CSA进行评估后发现,患者肌肉质量下降迅速,UCR与肌肉丧失率呈明显负相关(分别为R2=0.39、P<0.001和R2=0.44、P<0.001)。在一项对321例胰腺癌手术患者的研究中,升高的UCR可准确反映术后患者的骨骼肌萎缩,同时多因素Logistic回归分析结果表明,UCR是患者术后并发症的独立预测因子(OR=1.89,95%CI为1.52~2.14,P=0.015);UCR高于中位数的患者并发症更多(35.0%比17.4%,P=0.007),术后住院天数更长(d:14.6±5.5比9.6±4.3,P=0.017)[188]

3.12 临床问题12:

存在再喂养综合征(refeeding syndrome,RFS)风险的重症患者营养治疗期间是否需要监测血磷?

推荐意见:建议存在RFS风险的重症患者,营养治疗前及营养治疗期间监测血磷水平(弱推荐,极低质量证据)。

推荐依据:磷是主要的细胞内阴离子,为许多生物过程所必需,尤其是二磷酸腺苷再生为三磷酸腺苷,而且还参与糖酵解、细胞内缓冲以及细胞膜构成[192]。临床上,低磷与心功能减低、心律失常及呼吸功能不全有关[193]。低磷和高磷都与死亡增加有关,呈"U"型曲线[194]。用胰岛素严格控制血糖可导致或加重患者的低磷血症,是RFS的评价指标之一。这是因为磷离子从细胞外进入细胞内所致。连续性肾脏替代治疗(continuous renal replacement therapy,CRRT)常导致低磷[181]。ICU患者出现再喂养低磷酸盐血症(血磷<0.65 mmol/L或血磷降低>0.16 mmol/L)应当予以关注[195]。一项荟萃分析提示ICU中RFS相关的低磷血症发生率高达27%[196]。2项荟萃分析提示重症患者的低磷可能与不良预后相关[197,198]。ICU患者低磷有2个峰值,第1个高峰通常在入ICU后12 h,与摄入不足相关;第2个高峰在营养治疗开始后3~5 d。因此,营养治疗前需注意RFS高风险患者的筛查,如较长时间营养摄入不足或近期饥饿、丢失增加、消化道吸收不良疾病(如炎性肠病)、慢性酒精中毒、低体质量、3个月内非预期体质量降低>15%,以及营养治疗前即存在低钾、低磷、低镁血症等患者[199]。再喂养低磷酸盐血症患者需要每日监测2~3次电解质水平,并按需补充[195],营养治疗开始的48 h需限制热量供给,之后逐渐增加[200]

证据说明:2020年的一项系统评价(12项观察性研究,7 626例)显示,ICU中的低磷血症与总住院时间延长(SMD=2.19,95%CI为1.74~2.64,I2=0%,P<0.001)以及ICU住院时间延长相关(MD=2.22,95%CI为1.00~3.44,I2=98%,P<0.001),而与全因病死率增加无关(RR=1.13,95%CI为0.98~1.31,I2=59.6%,P=0.09)[197]。2022年一项系统评价(10项观察性研究,60 358例)的结果显示,高磷血症是ICU患者全因病死率的独立危险因素(OR=2.85,95%CI为2.35~3.38,I2=86.5%,P<0.000 1);同时,高磷血症的ICU患者需要更多的肾脏替代治疗(renal replacement therapy,RRT;OR=4.96,98%CI为2.43~10.12,I2=94.9%,P<0.000 1)[201]。对于RFS的发生率,2021年一项荟萃分析(35篇观察性研究,6 251例)显示,在成人患者中,RFS发生率在0%~62%,再喂养低磷血症(refeeding with hypophosphatemia,RH)发生率为7%~62%。在亚组分析中,RH数据具有高度异质性。ICU患者和最初喂养量>20 kcal·kg-1·d-1者似乎有较高的RFS发生率(44%;95%CI为36%~52%)和RH发生率(27%;95%CI为21%~34%)[196]

3.13 临床问题13:

重症患者营养治疗期间是否需要监测血糖?

推荐意见:建议重症患者营养治疗期间应动态监测血糖(弱推荐,极低质量证据)。

推荐依据:血糖异常包括低血糖、高血糖和高血糖变异度,无论患者是否患有糖尿病,这在ICU中均很常见,且与ICU患者的不良预后增加相关[202,203]。在入ICU后或营养治疗开始的前2 d,至少应每2~4 h测量1次血糖。当葡萄糖水平>10 mmol/L时,应使用胰岛素。理想的血糖目标仍然有待明确。观察性研究显示,严重高血糖〔>180 mg/dL(10.0 mmol/L)〕、高血糖变异度(变异系数>20%)、轻度低血糖〔<70 mg/dL(3.9 mmol/L)〕患者病死率增加[204,205,206]。建议在血糖>150 mg/dL或180 mg/dL(8.3 mmol/L或10.0 mmol/L)时开始胰岛素治疗[207]。血糖控制是必不可少的,血糖控制目标应为6~8 mmol/L,这已被证明与改善预后相关[208,209,210,211]。对于血糖不稳定的患者,可能需要更频繁的测量;当达到稳定阶段后降低监测频率。

血糖控制过程包括多个步骤[212]:①取血:优先选择中心静脉或动脉血。避免对重症患者进行指尖采血。②血糖测量:必须使用血气分析仪或中央实验室分析仪。③胰岛素:对于持续进行营养支持(EN或PN)的患者,可使用微注泵从静脉连续输注胰岛素。鉴于大量的队列研究结果证实,血糖异常与校正后的病死率升高相关,应避免严重高血糖与低血糖事件及高血糖变异度。使用血糖目标范围的下限〔>90 mg/dL(5 mmol/L)〕以及动态滴定胰岛素的输注,并根据实际情况进行调整,似乎是合理的策略。

证据说明:近期一项系统评价(57项RCT [202,203,204,205,206,207,208,209],21 840例)结果显示,与常规治疗策略比较,接受强化血糖控制的ICU患者全因病死率显著降低(OR=0.89,95%CI为0.80~1.00,I2=32%,P=0.04),感染率降低(OR=0.65,95%CI为0.51~0.82,I2=47%,P=0.000 2),获得性脓毒症的发生率较低(OR=0.80,95%CI为0.65~0.99,I2=0%,P=0.04),ICU住院时间缩短(MD=-0.70,95%CI为-1.21~-0.19,I2=70%,P=0.007)。然而,血糖控制80~110 mg/dL(4.4~6.1 mmol/L)组患者出现严重低血糖的风险显著升高(OR=5.63,95%CI为4.02~7.87,I2=67%,P<0.000 01)[213]

3.14 临床问题14:

连续血糖监测(continuous glucose monitoring,CGM)是否有助于重症患者营养治疗期间的血糖管理?

推荐意见:推荐重症患者营养治疗期间,有条件的医院可以开展CGM(强推荐,中等质量证据)。

推荐依据:根据现有证据,对于大多数危重症患者来说,准确调节血糖至关重要。目前几种常见的即时血糖测量包括指尖、静脉血和动脉血,通常用于指导胰岛素治疗。然而,这类技术的缺点在于只能检测瞬间血糖,频繁采血导致的耗时和成本增加,两次测量之间的低血糖事件不能反映长期的昼夜血糖水平[214,215,216]。CGM能够连续自动提供即时血糖值,是防止低血糖事件、降低血糖变异与平稳控制的保障。在当前CGM技术中,皮下CGM的临床应用最成熟[214]

皮下CGM可以通过微创皮下传感器测量间质液中的葡萄糖[217]。大量研究表明,皮下CGM装置在测量间质葡萄糖水平方面具有相对较好的准确性,且不受电解质和酸碱失衡、疾病严重程度及危重症患者BMI的影响[218]。此外,CGM因其侵入性小、感染风险低、失血量少、易于使用的特点,受到ICU医护人员的欢迎[216,218]。一项荟萃分析提示,与间断血糖监测方法比较,CGM可以显著减少低血糖的发生并降低短期病死率;CGM组平均血糖波动幅度显著降低,血糖变异系数也有降低的趋势;此外,与间断血糖监测相比,CGM的感染率更低[219]

证据说明:一项最新发表的荟萃分析(19项RCT,1 852例)显示,与间断血糖监测方法比较,CGM可以显著减少低血糖的发生(OR=0.35,95%CI为0.25~0.49,I2=0%,P<0.0001);显著降低短期病死率(OR=0.35,95%CI为0.34~0.86,I2=56%,P=0.01)。CGM组平均血糖波动幅度显著降低(MD=-1.41,95%CI为-2.24~-0.58,I2=95%,P=0.0009);CGM治疗期间血糖变异系数趋于降低(MD=-1.41,95%CI为-3.50~0.46,I2=88%,P=0.08)。CGM组感染率明显降低(RR=0.21,95%CI为0.10~0.44,I2=9%,P<0.000 1)[220]。只有2项RCT描述了两种策略之间的成本,其中一项研究显示CGM组患者平均每日成本较低,而另一项研究报告组间没有差异。

3.15 临床问题15:

重症患者早期EN期间是否需要关注肠道灌注相关指标?

推荐意见:建议对于未撤离血管活性药物的重症患者,早期EN期间需要动态监测血压、血管活性药用量、乳酸、皮肤斑点评分等灌注指标(弱推荐,极低质量证据)。

推荐依据:肠道血流占心排血量的20%~25%,小肠绒毛的血管特点及逆向血流、动静脉短路,使得肠上皮对灌注压力和容量的要求更高。EN时局部与门静脉血流增加,存在灌注不足时,可能加重黏膜上皮氧的供需不匹配,加重肠道缺血,甚至出现非闭塞性肠系膜缺血(non-occlusive mesenteric ischemia,NOMI)[221]。有研究显示,去甲肾上腺素(norepinephrine,NE)>0.2 μg·kg-1·min-1的重症患者,肠内FI发生率增高[222]。有研究显示,休克患者皮肤花斑评分、血乳酸等外周灌注指标与EN的耐受性相关[131,223]。因此,存在肠缺血高风险及未撤离血管活性药物的重症患者,启动EN,尤其早期及喂养量增加时,需要评估升压药物使用剂量、动态监测与评估循环及组织灌注指标。

证据说明:经过系统检索,结果显示有6项相关研究(53 281例),未发现与主题相关的系统评价。一项包含66例休克患者的前瞻性研究表明,以NE阈值0.2 μg·kg-1·min-1预测FI,敏感度为88.1%,特异度为47.1%,AUC为0.653(95%CI为48.2~82.5,P=0.067)[222]。一项包含259例休克患者的回顾性研究同样显示,EN不耐受组NE均值亦高于耐受组(μg·kg-1·min-1:0.230比0.157)[224]。另一项包含120例感染性休克患者的单中心回顾性观察研究表明,如NE剂量<0.14 μg·kg-1·min-1,EN耐受的可能性更高(OR=2.35,95%CI为1.16~6.41,P=0.021)[132]。近期一项大样本回顾性观察研究(52 563例)显示,NE<0.3 μg·kg-1·min-1的休克患者,早期EN组28 d病死率显著低于延迟EN组;当NE>0.3 μg·kg-1·min-1时,早期EN组与延迟EN组28 d病死率无明显差异(OR=1.4%,95%CI为-7.4%~4.7%)[225]。综合以上研究,如NE应用剂量<0.2~0.3 μg·kg-1·min-1的休克患者,早期EN相对更为安全。

此外,反映休克患者组织灌注的指标可能有助于预测早期EN耐受性。一项包含141例休克患者的前瞻性研究显示,12 h皮肤花斑评分是EN治疗失败的独立风险预测因子(RR=1.28,95%CI为1.09~1.50,P=0.003)[226]。另一项包含132例休克患者的回顾性研究表明,血乳酸水平升高也是EN不耐受的独立危险因素(OR=2.7,95%CI为1.6~4.4,P<0.001)[223]

3.16 临床问题16:

重症患者营养治疗期间是否需要监测胆红素与胆汁淤积?

推荐意见:建议需要长时间完全肠外营养(total parenteral nutrition,TPN)和(或)肝功能障碍的重症患者,动态监测血胆红素及胆汁淤积。建议使用血胆红素评估TPN相关的肝内胆汁淤积,使用腹部超声评估肝外胆汁淤积(弱推荐,极低质量证据)。

推荐依据:早年的临床及实验研究证明,TPN相关淤胆主要病理改变表现为肝小叶汇管区毛细胆管堵塞,与较长时间过高葡萄糖热量、胃肠道缺乏食物刺激、肝肠循环改变、以及胆囊收缩素、胃泌素、YY肽等胃肠道激素分泌减少等因素相关,导致胆囊收缩减弱,胆囊壁增厚、肝内胆汁淤积等表现。2000年后主要有3项TPN相关淤胆的研究[227,228,229],包括1项大样本多中心RCT研究、1项前瞻性多中心队列研究、1项前瞻性自身对照研究,结果表明,营养治疗期间的胆汁淤积主要与PN相关,启动和增加EN、降低葡萄糖供给及优化脂肪酸类型可得到改善。因此,在需要长时间TPN和(或)合并肝功能不全及胆盐代谢障碍、肠功能衰竭的重症患者,营养治疗期间应注意胆红素、肝酶水平、肝胆超声等胆汁淤积相关监测。

证据说明:经过系统检索,结果显示,有3项与该主题相关的观察性研究,未发现与该主题相关的系统评价。一项重症患者的前瞻性多中心队列研究(725例)比较了PN与EN患者肝内胆汁淤积和肝功能不全的发生率,研究中肝内胆汁淤积定义为:碱性磷酸酶(alkaline phosphatase,ALP)>280 U/L、γ-谷氨酰转移酶(γ-glutamyltransferase,γ-GGT)>50 U/L或胆红素>1.2 mg/dL(20.5 μmol/L)。结果显示,TPN组存在更高的肝内胆汁淤积风险(OR=1.7,95%CI为1.04~2.90),TPN组肝功能不全发生率更高(TPN组比EN组:30%比18%,P<0.001);此外,与未发生肝功能不全的人群相比,出现肝功能不全的人群人工营养时间更长(d:13比8,P<0.001),且热量供给更高〔kcal·kg-1·d-1:25.54(24.49,30.00)比25.00(23.33,29.41),P<0.05〕[227]。一项比较重症患者早期PN(48 h内)与延迟PN(8 d后)的大样本RCT研究(4 640例)显示,经胆囊超声检测,早期PN组胆汁淤积发生率更高(45%比37%,P=0.04),并出现更高的血清γ-GGT(U/L:50比38,P=0.000 7)、ALT(U/L:28比24,P=0.005)和ALP(U/L:178比159,P=0.02)[228]。另一项多中心前瞻性观察纳入62例肝功能指标异常的腹部外科术后患者,EN治疗4 d后总胆红素明显下降(mg/dL:9.28±5.39比15.14±8.9,P<0.000 1)[229],但并不能除外腹部外科术后病情恢复及其他治疗对胆红素的影响。

3.17 临床问题17:

重症患者营养治疗期间是否需要监测三酰甘油?

推荐意见:建议重症患者,尤其急性胰腺炎、严重烧伤的重症患者,营养治疗期间进行三酰甘油监测(弱推荐,极低质量证据)。

推荐依据:脂肪乳剂过量补充或输注速度过快,可导致脂肪超载、三酰甘油廓清障碍,甚至肝脏损伤。接受PN的重症患者,尤其同时应用较长时间丙泊酚镇静治疗时,应注意脂肪超载和脂代谢监测。不同类型脂肪乳剂(如长链脂肪乳剂、物理混合中长链脂肪乳剂、结构中长链脂肪乳剂),其脂肪廓清速率不同[230,231,232]。此外,较多研究已证明,急性胰腺炎、重度烧伤等危重症患者,高血三酰甘油水平与疾病严重程度相关,并导致并发症增多、病死率增高[233,234]。脂代谢异常风险人群包括高脂血症胰腺炎、肝脏急慢性损伤、脓毒症以及严重低蛋白血症患者,其脂肪代谢与转运障碍,营养治疗期间应监测血浆三酰甘油水平,输注脂肪乳剂期间,其水平不应>3 mmol/L(265 mg/dL)[232],并依据其水平调整用量与速度。

证据说明:经过系统检索,结果显示,有8项研究,其中3项小样本RCT研究、1项非盲交叉设计研究、1项观察性研究、3项荟萃分析。一项纳入10例急性肾损伤(acute kidney injury,AKI)患者的交叉研究表明,高能量摄入引起三酰甘油水平升高(+1.36 mmol/L,P=0.007)[230]。几项小样本RCT研究比较不同脂肪乳剂营养治疗对血三酰甘油水平的影响,其中一项为包含32例脓毒症患者的前瞻随机双盲研究结果显示,患者使用橄榄油、大豆油、鱼油的混合脂肪乳剂TPN治疗后,血三酰甘油水平较治疗前下降(mg/dL:132.1±15.5比169.9±36.5),而单纯大豆油TPN组血三酰甘油水平在治疗前后无明显变化(mg/dL:232.5±40.4比240.7±55.7)[231]。另一项纳入38例外科术后患者的研究结果显示,在术后第4天,大豆油中长链脂肪乳+鱼油组血三酰甘油水平较大豆油中长链脂肪乳组明显降低(mg/dL:88.3±37.3比120.0±45.0)[232]

多项观察重症胰腺炎预后与血三酰甘油水平关系的研究均显示,高三酰甘油血症与不良预后相关。一项纳入7 285例急性胰腺炎患者的荟萃分析显示,高血脂性胰腺炎患者出现器官功能衰竭的可能性更大(肾功能衰竭:OR=3.18,95%CI为1.92~5.27,P<0.000 01;呼吸衰竭:OR=2.88,95%CI为1.61~5.13,P<0.000 1;休克:OR=3.78,95%CI为1.69~8.44,P<0.000 1),且死亡风险更高(OR=1.90,95%CI为1.05~3.45,P<0.01)[233]。另一项包含22例严重烧伤患者的研究也显示,既往合并高脂血症的患者病死率更高[234]

3.18 临床问题18:

合并肾功能损害〔AKI/慢性肾脏病(chronic kidney disease,CKD)〕以及接受RRT的重症患者进行营养治疗时,是否需要常规监测电解质与酸碱平衡?

推荐意见:建议合并急/慢性肾脏损伤以及接受RRT治疗的重症患者进行营养治疗时监测电解质水平与酸碱平衡(良好实践声明)。

推荐依据:在AKI与晚期CKD的患者中,肾脏清除多余的水、钠、钾、磷或氢离子[235]的能力明显下降,易发生水钠潴留、高钾血症、高磷血症或酸中毒等风险。而接受营养治疗的重症患者,摄入钠、钾或磷酸盐过量或不足均可加剧与AKI/CKD相关的电解质和酸碱代谢变化。同时RRT治疗具有极高的电解质清除能力,但易导致低磷血症、低钾血症和低镁血症的发生[236,237]。因此,合并急/慢性肾脏损伤以及接受RRT治疗的重症患者进行营养治疗时,电解质水平与酸碱平衡易发生紊乱,导致患者临床预后不良。AKI/CKD患者可能因为代谢性酸中毒、创伤或分解代谢从细胞内空间释放钾[238],以及使用导致高钾血症的药物,如肾素-血管紧张素-醛固酮系统(renin-angiotensin-aldosterone system,RAAS)抑制剂、β受体阻滞剂、非类固醇抗炎等导致高钾血症,或因腹泻、代谢性碱中毒、利尿治疗等原因导致低钾血症[236,239]。营养治疗包含钾的摄入,摄入过量引起的高钾血症及RRT患者摄入不足导致的低钾血症是AKI/CKD-AKI患者猝死的潜在原因,因此需监测血钾离子水平。AKI/CKD患者合并肾性骨营养不良可能造成钙磷代谢紊乱[240,241];磷酸盐水平升高可导致继发性甲状旁腺功能亢进和动脉、心脏瓣膜钙化,增加心血管病死率[242]。长时间的RRT治疗可能导致低磷血症,EN的加入也可能引发包括低磷血症在内的RFS[195]。低磷血症是导致重症患者呼吸衰竭、撤机困难、心律失常的重要影响因素[181,193,243]。因此,定期监测磷水平既有助于限制磷负荷[244],又可以避免低磷血症。AKI/CKD患者肾脏中和固定酸能力降低,营养治疗中的蛋白摄入会导致大量固定酸的摄入,增加机体酸负荷[245];代谢性酸中毒可降低CKD 2~4期患者肾小球滤过率(Ptrend=0.02)[246,247],增加终末期肾病(end-stage kidney disease,ESKD)的风险(P=0.05)[248],还可能导致骨骼脱矿、胰岛素抵抗、高钾血症等并发症。因此,合并急/慢性肾脏损伤以及接受RRT治疗的重症患者进行营养治疗时应监测电解质水平与酸碱平衡。

证据说明:经过系统检索,未检索到直接的研究证据。

4 未达成共识与未来需要研究关注的临床问题

除上述明确的推荐意见外,关于危重症患者营养评估和监测还有许多值得讨论的内容。由于研究样本量有限、研究质量不高、国内实用性以及专家意见不统一等原因,未能形成良好共识,但可以成为需要研究与临床关注的问题,就讨论最多或者有望成为未来研究方向的问题在此陈述。

4.1 临床问题1:

危重症患者早期EN期间是否需要关注与肠道屏障功能相关的指标?

AGI患者常伴随肠道黏膜屏障破坏、毒素与细菌移位、继发感染和多器官功能障碍[249,250]。2012年,ESICM腹部问题工作组提出了AGI及其4个严重程度的定义[108],提出AGI的诊断应基于GIS、IAP、GRV及全身情况等确立。然而AGI分级由于其主观性较高,且着重于FI;基于其原理所开发的胃肠功能障碍评分(gastrointestinal dysfunction score,GIDS)更为明确且主观性小,可以独立存在亦可作为SOFA胃肠功能障碍判断的补充,能很好地预测病死率[251]。无论是GIDS评分还是AGI的诊断,除IAP外,均基于GIS、GRV等指标,而症状的出现往往是延迟且缺乏敏感性的。事实上,一旦根据临床症状和体征确认患者高级别AGI,就意味着EN遇到了波折,甚至意味着出现误吸、肠道缺血等风险。临床医师仍期待出现早期、有效的标志物来提示肠道屏障功能损伤,帮助监测EN效果,从而指导营养决策和优化患者营养结局。目前临床上有许多指标可能提示肠道黏膜屏障功能损伤,如瓜氨酸、肠型脂肪酸结合蛋白(intestinal fatty acid-binding protein,I-FABP)、二胺氧化酶、D-乳酸、血管生成素-2等。

瓜氨酸在肠细胞中合成进入门静脉循环,在肾脏中转化为精氨酸[252,253],<10 mmol/L时表明肠上皮细胞质量损伤,提示肠道黏膜屏障结构受损[254,255,256]。I-FABP只在肠上皮细胞缺血性坏死时入血或尿,>100 pg/mL(ng/L)时提示急性肠系膜缺血,>355 pg/mL(ng/L)提示预后不良,但其半衰期过短(11 min)、易受肾功能影响[254,257]。D-乳酸是腔内细菌发酵的产物,人体无法合成,肠屏障受损时D-乳酸通过损伤的黏膜进入循环,从而血浆水平升高,但其升高(>10 mmol/L)时间较肠道受损/缺血时间延迟[150]。肠源性内毒素主要来源于腔内细菌[258],当血内毒素升高(>20 U/L)时,可能提示肠黏膜屏障破坏及通透性增加、毒素与细菌移位[255],但其诊断效能低,易受全身感染的影响[256]。目前上述肠黏膜屏障功能指标的截断值普遍存在争议,且只能在有条件的医院开展。

危重症患者在启动EN后,肠道黏膜屏障标志物水平会发生变化,提示肠道黏膜屏障标志物可能作为危重症患者早期EN耐受性的评估指标。iSOFA研究[259]观察了224例成人ICU患者的血浆瓜氨酸与血浆I-FABP水平,结果显示:启动EN患者较未接受EN患者血浆瓜氨酸水平明显增加(P=0.049);EN第4天喂养量达到80%目标量的患者瓜氨酸水平继续升高,而未达标组水平呈轻度下降;另一方面,I-FABP在早期EN组也明显升高(P=0.004),在第3天达目标喂养量的患者达到最高均值〔pg/mL(ng/L):646(IQR 313,1116)比278(IQR 190,701),P=0.022〕。另一项NUTRIREA-2研究[260]显示,在合并休克的机械通气患者中,早期EN组较早期PN组血浆瓜氨酸水平明显升高〔mmol/L:18.7(13.4,29.2)比15.3(9.8,21.2),P=0.01〕;在启动营养后的第3天和第8天,早期EN组血浆I-FABP水平〔pg/mL(ng/L)〕明显高于早期PN组(第3天:159比50,P=0.005;第8天:225比50,P=0.03)。低质量证据提示D-乳酸和内毒素水平升高与AGI风险相关[256,261]。综上所述,肠道屏障检测指标(如瓜氨酸、I-FABP、D-乳酸等)有望作为未来危重症患者评估EN耐受性的指标,但目前尚缺乏有力的临床证据支持。

4.2 临床问题2:

重症患者营养治疗期间是否需要监测氮平衡(nitrogen balance,NB)?

NB是识别体内蛋白质代谢状态(即蛋白质损失或增加)广泛使用和可靠的指标之一[262]。其中,正氮平衡提示全身蛋白质的增加,而负氮平衡提示全身蛋白质的消耗。危重症患者常由于感染、创伤、炎症、药物等因素导致负氮平衡,从而导致预后不良[263,264,265,266,267];通过营养治疗补充蛋白质达成的正氮平衡则可促进体内蛋白质合成,缩短住院时间和降低病死率[185,267,268,269]。一项系统评价纳入8项RCT研究(1 409例)以评价NB与危重症患者临床预后的关系。其中5项比较了死亡与存活两组的NB水平,发现两组初始NB无显著差异(MD=1.20,95%CI为-0.70~3.11,I2=77%,P=0.22),而存活患者最终NB明显高于死亡患者(2项研究,263例;MD=3.69,95%CI为1.92~5.46,I2=55%,P<0.0001),提示决定危重症患者临床预后为最终NB状态而非初始NB,且正氮平衡有助于改善临床预后[270]。NB与蛋白质的摄入量呈正相关,在蛋白质摄入量>2 g·kg-1·d-1时更容易达成[267]。ESPEN指南推荐危重症患者的蛋白质目标应至少达到1.3 g·kg-1·d-1[8];ASPEN指南建议危重患者蛋白质摄入量为1.2~2.0 g·kg-1·d-1;老年患者则需要1.5~2.5 g·kg-1·d-1蛋白质才可能达到正氮平衡[271]。另一方面,有研究提出急性早期积极的营养供给可抑制自噬,由此可能导致重症肌病[272,273],故早期蛋白质供给需要在客观监测(如NB)指导下逐步达标。

需要注意的是,NB仅反映总体净蛋白质平衡,并不能区分蛋白质合成或分解的速率。NB监测的局限性体现在:①受炎症与代谢状态、肾功能、CRRT等影响,如24 h尿氮采集实施困难;少尿(24 h尿量≤500 mL)及无尿患者应用受限;CRRT患者需要测定超滤液的含氮量[274];特殊部位(如伤口引流管)的氮损失可能影响NB的准确评估[275]。②尿液外的氮是估计的,可随危重疾病而变化。③连续性检测较客观、需临床医师综合分析,动态评价与解释。

4.3 临床问题3:

合并肾功能损害的重症患者进行营养治疗时,是否需要测量24 h氮排量?

需要注意到,蛋白质摄入增多可能加重肾脏负担,并引起氮质血症,增加死亡风险[263,264]。对于合并肾功能损害的危重症患者,一方面肾脏储备能力下降,不恰当的蛋白质摄入可能会导致肾损伤风险增加;另一方面,这类患者可能需要进行血液净化治疗,代谢亢进及滤器造成的氮丢失会影响目标蛋白质目标达成,不利于临床预后。如何确定合并AKI/CKD患者的蛋白质需求是一个亟待解决的临床话题。

临床上可通过24 h尿尿素氮水平测定计算氮损失、评估NB[276]。多项研究均使用24 h尿尿素氮测定评估危重症患者NB情况以评价营养治疗效果[267,268,277,278,279,280,281,282,283],但均未比较监测24 h尿尿素氮与不监测之间的临床结局,因而在本指南中无法作出对合并功能不全的危重症患者进行24 h氮排量监测的推荐。

24 h尿尿素氮水平测定通常需要一定的实验室条件,这在国内的很多医院难以达到,因而难以在国内ICU推广使用。另外,通过尿尿素氮评估总氮损失的方法目前尚无统一方法,难以做到精准评估[262,284];除此之外,24 h尿尿素氮测定耗时较长,精确性也常常受到影响。也有研究使用6 h尿氮测定替代12 h尿氮测定和24 h尿氮测定,结果显示三者之间并无显著区别[285],但该项研究排除了肝功能衰竭和肾功能衰竭患者。尽管如此,尿氮水平(反映NB)仍可能是危重症患者制定蛋白质目标有前景的参考指标。

4.4 关于氮排量的测量方法,针对非RRT患者和RRT患者有所不同 4.4.1 非RRT患者氮排量监测方法:

因氮大部分都通过尿液排出,所以可以通过尿氮来估算氮排量。

NB=氮摄入量-氮损失量

氮摄入量(g/d)=摄入蛋白质/氨基酸的量(肠内/肠外)/6.25

氮损失量(g/d)=尿尿素氮(g)+体内尿素氮库的变化(g)+无法测量的氮损失(g)

尿尿素氮(g)=尿尿素(mg/dL)×0.01(将mg/dL换算为g/L)×尿量(L)×0.466 g氮/g尿素

体内尿素氮库的变化(g)=〔第a天血浆尿素水平(mg/dL)-第a-1天血浆尿素水平(mg/dL)〕×0.01(将mg/dL换算成g/L)×分配体积尿素(≈0.6×体质量)×0.466 g氮/g尿素

无法测量的氮损失(如粪氮、皮肤排氮等)=非尿素尿氮损失+非尿氮损失(≈4 g)

4.4.2 RRT患者氮排量监测方法

氮损失(g/d)=尿尿素氮+RRT滤出废液/透析废液含氮+体内尿素氮库的变化+无法测量的氮丢失

RRT滤出废液/透析废液含氮量测定方法:相隔8 h取3份透析液,对于24 h尿量>500 mL的患者,与透析液样本同时抽取尿样,然后用凯氏定氮法对每个透析液(尿液)样本进行总氮分析。

5 指南的制订过程与形成方法

本指南的设计与制订遵循2022年中华医学会发布的《中国制订/修订临床诊疗指南的指导原则(2022版)》[286]。指南的撰写参考国际实践指南报告标准(Reporting Items for Practice Guidelines in Healthcare,RIGHT)[287]

5.1 指南注册与计划书:

本指南已撰写计划书,同时也在国际实践指南注册平台上进行了前瞻性注册,指南注册号为PREPARE-2021CN186。

5.2 指南发起机构:

该指南由CSCCM发起,兰州大学健康数据科学研究院指南与标准研究中心、世界卫生组织(World Health Organization,WHO)指南实施与知识转化合作中心、兰州大学GRADE中心提供方法学支持。

5.3 指南制订工作组:

本指南成立了多学科工作组,包括以重症医学科为主的多学科团队,涵盖肠内外营养、普通外科、循证医学等领域专家,根据职责分为指南指导委员会、指南撰写组、共识专家组和指南方法学组。指南指导委员会由6名专家组成,其主要职责为监督指南制订全过程、提供指南制订必要的咨询和指导、审定指南全文初稿和终稿;指南撰写组由本领域具有丰富临床经验的17名专家组成,其主要职责为提出具体的临床问题、撰写和修改推荐意见、撰写指南全文;共识专家组主要由本领域经验丰富的35名临床医师组成,其主要职责为对临床问题的重要性和初拟的推荐意见进行投票共识;指南方法学组由兰州大学健康数据科学研究院指南与标准研究中心/兰州大学推荐意见分级的评估、制订及评价(grading of recommendation, assessment,development and evaluation,GRADE)中心指南方法学专家团队组成,其主要职责是对各专家团队进行方法学培训,提供证据检索、评价与分级等过程的指导。本指南工作组成员均填写利益冲突声明表,声明近3年相关的经济利益冲突和学术利益冲突。工作组所有成员均不存在与本指南直接的利益冲突,因此均不受限地参与到指南的整个制订过程中。

5.4 临床问题的收集和遴选:

指南撰写组成员在征求各方意见和建议后,充分查阅和总结国内外发表的重症营养领域的相关研究,同时参考此前国内外组织发表的指南及共识,通过归类、去重、合并,初拟26个临床问题。指南方法学组成员基于上述初拟的临床问题设计了临床问题重要性调研问卷,通过在线的问卷星形式让共识专家组对临床问题的重要性进行评分和意见反馈,其中重要性评分采用7分制Likert量表(1~7分:问题重要性随分值的增加而递增)。此外,也让临床医师补充其他重要的临床问题,最终按照重要性排序结果及专家意见,经过40名专家的调研反馈,遴选出24个本指南关注的临床问题。

5.5 证据的检索、评价与分级:

指南撰写组成员在指南方法学组的指导下,针对最终纳入的临床问题,按照PICO原则〔人群(population)、干预(intervention)、对照(comparison)和结局(outcome)〕对其进行解构,并根据解构的问题进行检索。检索的数据库包括Medline、Cochrane Library、Web of Science、中国生物医学文献、万方数据库和中国知网数据库,以及ASPEN、ESPEN和美国重症医学会(Society of Critical Care Medicine,SCCM)等官方网站,补充检索Google学术网站等。检索时间为建库至2023年7月。中英文检索词主要包括:重症、危重、营养支持、肠内营养、肠外营养、critical care、critical illness、ICU、nutritional support、enteral nutrition、parenteral nutrition等。若系统检索后发现有方法学质量较高的系统评价,则直接纳入支持指南的推荐意见;若现有系统评价的方法学质量低,或者筛选之后某一问题没有系统评价时,则纳入原始研究(RCT、观察性研究等)制作新的系统评价,从而支持指南推荐意见的形成。

对于纳入的研究,工作组成员则采用工具系统评价偏倚风险评价工具(a measurment tool to assess systematic reviews,AMSTAR)[288]对纳入的系统评价及Meta分析进行偏倚风险评价;使用Cochrane偏倚风险评价工具(risk of bias,ROB)[289]对RCT研究进行偏倚风险评价;使用诊断准确性研究的质量评价工具(quality assessment of diagnostic accuracy studies-2,QUADAS-2)[290]对诊断准确性试验研究进行偏倚风险评价;使用纽卡斯尔-渥太华量表(Newcastle-Ottawa scale,NOS)[291]对观察性研究进行偏倚风险评价。评价过程由2人独立完成;若存在分歧,则共同讨论或咨询第三方解决。使用GRADE方法[292]对证据体和推荐意见进行分级。

5.6 形成推荐意见:

指南撰写组基于每个临床问题制作的证据总结表,同时考虑我国患者的偏好与价值观、干预措施的成本和利弊后,初步草拟了符合我国临床诊疗实践的24条推荐意见,撰写格式按照临床问题、推荐意见、推荐依据、证据说明的形式进行详细呈现。指南方法学组将草拟的推荐意见设计成问卷,分别于2023年2月和4月组织共识专家组成员进行两轮德尔菲推荐意见调研。两轮德尔菲调研共68人次参与,共收集到72条专家反馈建议;指南撰写组基于专家意见修改推荐意见、撰写专家意见反馈报告,最终有18条推荐意见达成共识(共识标准:每条推荐意见共识率>75%)。《中国成人ICU患者营养评估与监测临床实践指南》的流程及推荐意见见图1。《中国成人ICU患者营养评估与监测临床实践指南》的具体问题及推荐意见见表1

10.3760/cma.j.cn121430-20230829-00710.F001 《中国成人ICU患者营养评估与监测临床实践指南》的流程及推荐意见

注:ICU为重症监护病房,NRS-2002为营养风险筛查评分-2002,NUTRIC为危重病营养风险,mNUTRIC为改良危重病营养风险,SGA为主观整体评估量表,ALB为白蛋白,PAB为前白蛋白,LBM为瘦体组织含量,IC为间接测热法,UCR为尿素/肌酐比值,CGM为连续血糖监测,RFS为再喂养综合征,EN为肠内营养,FI为喂养不耐受,HGRV为高胃残余量,GIS为胃肠道症状,IAP为腹内压,BIA为生物电阻抗分析,TPN为完全肠外营养,RRT为肾脏替代治疗

10.3760/cma.j.cn121430-20230829-00710.T001

《中国成人ICU患者营养评估与监测临床实践指南》问题及推荐意见

临床问题 推荐意见 共识度(%)
① NRS-2002与mNUTRIC评分量表能否用于重症患者的常规营养风险筛查? 建议重症患者入ICU后48 h内,使用NRS-2002或者NUTRIC评分(或者mNUTRIC评分)对重症患者进行营养风险筛查。NRS-2002≥5分或者mNUTRIC≥5分时应考虑患者存在高营养风险,应尽快启动全面的营养评估与营养治疗,以改善患者预后(弱推荐,低质量证据) 88.57
② SGA可否用于危重症患者的常规营养评定? 建议使用SGA作为危重症患者营养评定的量表工具(弱推荐,低质量证据) 88.57
③血浆蛋白(ALB、PAB)能否作为重症患者营养筛查与评定的参考指标? 3.1 建议ALB或PAB用于重症患者营养风险筛查(弱推荐,低质量证据) 80.00
3.2 不建议ALB或PAB用于重症患者急性炎症早期营养状态评定(弱推荐,极低质量证据) 77.14
④骨骼肌或LBM能否用于重症患者的营养风险筛查及营养评定? 推荐应用骨骼肌或LBM进行重症患者的营养风险筛查及营养评定(强推荐,中等质量证据) 85.71
⑤评估重症患者骨骼肌或LBM的可靠方法有哪些? 建议采用超声法、BIA法对重症患者骨骼肌或LBM进行实时动态个体化评估(弱推荐,低质量证据) 80.00
⑥如何临床判断EN FI,基于EN喂养量还是即时GIS? 建议EN FI判定为喂养过程中出现以HGRV为主症状的2项及以上GIS;或连续72 h喂养量<20 kcal·kg-1·d-1(弱推荐,低质量证据) 91.43
⑦胃肠超声能否预测重症患者EN FI? 对于进行EN的重症患者,建议应用胃肠道超声预测FI (弱推荐,低质量证据) 77.14
⑧监测IAP能否预测重症患者EN FI? 不建议常规监测IAP来预测重症患者EN FI(弱推荐,极低质量证据) 82.86
⑨重症患者营养治疗期间是否需要进行能量代谢评价? 建议重症患者营养治疗期间采用IC测定实际能量消耗并指导能量供给(弱推荐,低质量证据) 80.00
⑩重症患者营养治疗期间是否需要监测血浆PAB水平? 建议重症患者营养治疗期间监测血浆PAB水平,用于评价代谢状态与营养治疗的反应(弱推荐,极低质量证据) 97.14
⑪重症患者营养治疗期间是否需要进行UCR监测? 建议重症患者营养治疗期间进行UCR监测(弱推荐,低质量证据) 91.43
⑫存在RFS风险的重症患者营养治疗期间是否需要监测血磷? 建议存在RFS风险的重症患者,营养治疗前及营养治疗期间监测血磷水平(弱推荐,极低质量证据) 88.57
⑬重症患者营养治疗期间是否需要监测血糖? 建议重症患者营养治疗期间应动态监测血糖(弱推荐,极低质量证据) 100.00
⑭ CGM是否有助于重症患者营养治疗期间的血糖管理? 推荐重症患者营养治疗期间,有条件的医院可以开展CGM(强推荐,中等质量证据) 82.86
⑮重症患者早期EN期间,是否需要关注肠道灌注相关指标? 建议对于未撤离血管活性药物的重症患者,早期EN期间需要动态监测血压、血管活性药用量、乳酸、皮肤斑点评分等灌注指标(弱推荐,极低质量证据) 91.43
⑯重症患者营养治疗期间是否需要监测胆红素与胆汁淤积? 建议需要长时间TPN和(或)肝功能障碍的重症患者,动态监测血胆红素及胆汁淤积。建议使用血胆红素评估TPN相关的肝内胆汁淤积,使用腹部超声评估肝外胆汁淤积(弱推荐,极低质量证据) 100.00
⑰重症患者营养治疗期间是否需要监测三酰甘油? 建议重症患者,尤其急性胰腺炎、严重烧伤的重症患者,营养治疗期间进行三酰甘油监测(弱推荐,极低质量证据) 94.29
⑱合并肾功能损害(AKI/CKD)以及接受RRT的重症患者进行营养治疗时,是否需要常规监测电解质与酸碱平衡? 建议合并急/慢性肾脏损伤以及接受RRT治疗的重症患者进行营养治疗时监测电解质水平与酸碱平衡(良好实践声明) 100.00

注:ICU为重症监护病房,NRS-2002为营养风险筛查评分-2002,mNUTRIC为改良危重病营养风险,NUTRIC为危重病营养风险,SGA为主观整体评估量表,ALB为白蛋白,PAB为前白蛋白,LBM为瘦体组织含量,BIA为生物电阻抗分析,EN为肠内营养,FI为喂养不耐受,GIS为胃肠道症状,HGRV为高胃残余量,IAP为腹内压,IC为间接测热法,UCR为尿素/肌酐比值,RFS为再喂养综合征,CGM为连续血糖监测,TPN为完全肠外营养,AKI为急性肾损伤,CKD为慢性肾脏病,RRT为肾脏替代治疗

5.7 指南的撰写、外审与批准:

指南撰写组基于共识的推荐意见,完成指南全文初稿,然后提交外审专家进行审阅。基于外审专家的反馈意见,指南撰写组对整体意见进行修改,最后由指南指导委员会进行讨论并批准指南的发布。

5.8 传播与实施:

指南发布后,本指南工作组将主要通过以下方式对指南进行宣传和推广:①在专业期刊、公众号、网站等新媒体上进行宣传。②在重症营养领域的学术年会上进行指南的宣讲与解读,确保临床医师及其他利益相关群体充分了解并正确应用该指南。

5.9 指南的更新:

计划在3~5年内对本指南的推荐意见进行更新,按照国际指南更新方法(CheckUp)[293]进行。

6 基金项目

本指南获得吴阶平医学基金会"重症营养标准化治疗研讨项目"专项资助,用以承担制订过程中的科研费、材料费及项目组织实施等费用。资助机构不影响整个指南的制订过程。

专家组成员(按姓氏拼音排序)

指导委员会成员 陈德昌(上海交通大学医学院附属瑞金医院重症医学科),陈耀龙(兰州大学健康数据科学研究院,兰州大学GRADE中心),管向东(中山大学附属第一医院重症医学科),马晓春(中国医科大学附属第一医院重症医学科),邱海波(东南大学附属中大医院重症医学科,江苏省重症医学重点实验室),许媛(清华大学附属北京清华长庚医院重症医学科)

指南撰写组成员 陈传希(中山大学附属第一医院重症医学科),何伟(首都医科大学附属北京同仁医院重症医学科),胡波(武汉大学中南医院重症医学科),黄惠斌(清华大学附属北京清华长庚医院重症医学科),李建波(四川大学华西医院重症医学科),李小荷(山东大学齐鲁医院心外ICU),刘艾然(东南大学附属中大医院重症医学科),聂垚(中山大学附属第一医院重症医学科),欧阳彬(中山大学附属第一医院重症医学科),许媛(清华大学附属北京清华长庚医院重症医学科),杨晓(武汉大学中南医院重症医学科),尹万红(四川大学华西医院重症医学科),翟茜(山东大学齐鲁医院心外ICU),周华(清华大学附属北京清华长庚医院重症医学科),朱承睿(中国医科大学附属第一医院重症医学科),朱然(中国医科大学附属第一医院重症医学科),邹同娟(四川大学华西医院重症医学科)

共识专家组成员 艾宇航(中南大学湘雅医院重症医学科),安友仲(北京大学人民医院重症医学科),陈德昌(上海交通大学医学院附属瑞金医院重症医学科),陈尔真(上海交通大学医学院附属瑞金医院重症医学科),丁仁彧(中国医科大学附属第一医院重症医学科),杜斌(中国医学科学院北京协和医院重症医学科-MICU),管向东(中山大学附属第一医院重症医学科),胡振杰(河北医科大学第四医院重症医学科),康焰(四川大学华西医院重症医学科),黎毅敏(广州医科大学附属第一医院重症医学科,广州呼吸健康研究院),刘大为(中国医学科学院北京协和医院重症医学科),刘玲(东南大学附属中大医院重症医学科),隆云(中国医学科学院北京协和医院重症医学科),马朋林(贵黔国际总医院重症医学科),马晓春(中国医科大学附属第一医院重症医学科),钱传云(昆明医科大学第一附属医院急诊科),秦秉玉(河南省人民医院重症医学科),王常松(哈尔滨医科大学附属第一医院重症医学科),王春亭(山东省公共卫生临床中心重症医学中心),王小亭(中国医学科学院北京协和医院重症医学科),王新颖(东部战区总医院全军普通外科研究所,临床营养治疗中心),吴国豪(复旦大学附属中山医院普外科),吴健锋(中山大学附属第一医院重症医学科),席修明(首都医科大学附属复兴医院重症医学科),徐磊(天津市第三中心医院重症医学科),许强宏(浙江医院重症医学科),严静(浙江医院重症医学科),杨桦(解放军陆军军医大学新桥医院普通外科),杨毅(东南大学附属中大医院重症医学科,江苏省重症医学重点实验室),于凯江(哈尔滨医科大学附属第一医院重症医学科),于湘友(新疆医科大学第一附属医院重症医学中心),张丽娜(中南大学湘雅医院重症医学科),赵鸣雁(哈尔滨医科大学附属第一医院重症医学科),周发春(重庆医科大学附属第一医院重症医学科),周建新(首都医科大学附属北京世纪坛医院重症医学科)

指南方法学组成员 李沁原(重庆医科大学附属儿童医院,兰州大学健康数据科学研究院),周奇(兰州大学基础医学院循证医学中心,兰州大学健康数据科学研究院)

外审专家组成员 李建国(武汉大学中南医院重症医学科),李维勤(东部战区总医院重症医学科)

参考文献
参考文献 中华医学会.临床诊疗指南·肠外肠内营养学分册(2008版)[M].北京:人民卫生出版社, 2009. Kondrup J, Rasmussen HH, Hamberg O, et al. Nutritional risk screening (NRS 2002): a new method based on an analysis of controlled clinical trials [J]. Clin Nutr, 2003, 22 (3): 321-336. DOI: 10.1016/s0261-5614(02)00214-5. Teitelbaum D, Guenter P, Howell WH, et al. Definition of terms, style, and conventions used in A.S.P.E.N. guidelines and standards [J]. Nutr Clin Pract, 2005, 20 (2): 281-285. DOI: 10.1177/0115426505020002281. Lochs H, Allison SP, Meier R, et al. Introductory to the ESPEN guidelines on enteral uutrition: terminology, definitions and general topics [J]. Clin Nutr, 2006, 25 (2): 180-186. DOI: 10.1016/j.clnu.2006.02.007. Kondrup J. Nutritional-risk scoring systems in the intensive care unit [J]. Curr Opin Clin Nutr Metab Care, 2014, 17 (2): 177-182. DOI: 10.1097/MCO.0000000000000041. Ishibashi N, Plank LD, Sando K, et al. Optimal protein requirements during the first 2 weeks after the onset of critical illness [J]. Crit Care Med, 1998, 26 (9): 1529-1535. DOI: 10.1097/00003246-199809000-00020. 中华医学会.临床技术操作规范·肠外肠内营养学分册[M].北京:人民军医出版社2008. Singer P, Blaser AR, Berger MM, et al. ESPEN guideline on clinical nutrition in the intensive care unit [J]. Clin Nutr, 2019, 38 (1): 48-79. DOI: 10.1016/j.clnu.2018.08.037. McClave SA, Taylor BE, Martindale RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) [J]. JPEN J Parenter Enteral Nutr, 2016, 40 (2): 159-211. DOI: 10.1177/0148607115621863. Jie B, Jiang ZM, Nolan MT, et al. Impact of preoperative nutritional support on clinical outcome in abdominal surgical patients at nutritional risk [J]. Nutrition, 2012, 28 (10): 1022-1027. DOI: 10.1016/j.nut.2012.01.017. Kondrup J, Allison SP, Elia M, et al. ESPEN guidelines for nutrition screening 2002 [J]. Clin Nutr, 2003, 22 (4): 415-421. DOI: 10.1016/s0261-5614(03)00098-0. Heyland DK, Dhaliwal R, Jiang XR, et al. Identifying critically ill patients who benefit the most from nutrition therapy: the development and initial validation of a novel risk assessment tool [J]. Crit Care, 2011, 15 (6): R268. DOI: 10.1186/cc10546. Moretti D, Bagilet DH, Buncuga M, et al. Study of two variants of nutritional risk score "NUTRIC" in ventilated critical patients [J]. Nutr Hosp, 2014, 29 (1): 166-172. DOI: 10.3305/nh.2014.29.1.7001. Mendes R, Policarpo S, Fortuna P, et al. Nutritional risk assessment and cultural validation of the modified NUTRIC score in critically ill patients: a multicenter prospective cohort study [J]. J Crit Care, 2017, 37: 45-49. DOI: 10.1016/j.jcrc.2016.08.001. Lee ZY, Noor Airini I, Barakatun-Nisak MY. Relationship of energy and protein adequacy with 60-day mortality in mechanically ventilated critically ill patients: a prospective observational study [J]. Clin Nutr, 2018, 37 (4): 1264-1270. DOI: 10.1016/j.clnu.2017.05.013. Mukhopadhyay A, Henry J, Ong V, et al. Association of modified NUTRIC score with 28-day mortality in critically ill patients [J]. Clin Nutr, 2017, 36 (4): 1143-1148. DOI: 10.1016/j.clnu.2016.08.004. Kalaiselvan MS, Renuka MK, Arunkumar AS. Use of nutrition risk in critically ill (NUTRIC) score to assess nutritional risk in mechanically ventilated patients: a prospective observational study [J]. Indian J Crit Care Med, 2017, 21 (5): 253-256. DOI: 10.4103/ijccm.IJCCM_24_17. Coltman A, Peterson S, Roehl K, et al. Use of 3 tools to assess nutrition risk in the intensive care unit [J]. JPEN J Parenter Enteral Nutr, 2015, 39 (1): 28-33. DOI: 10.1177/0148607114532135. Özbilgin Ş, Hancı V, Ömür D, et al. Morbidity and mortality predictivity of nutritional assessment tools in the postoperative care unit [J]. Medicine (Baltimore), 2016, 95 (40): e5038. DOI: 10.1097/MD.0000000000005038. de Vries MC, Koekkoek WK, Opdam MH, et al. Nutritional assessment of critically ill patients: validation of the modified NUTRIC score [J]. Eur J Clin Nutr, 2018, 72 (3): 428-435. DOI: 10.1038/s41430-017-0008-7. Compher C, Chittams J, Sammarco T, et al. Greater protein and energy intake may be associated with improved mortality in higher risk critically ill patients: a multicenter, multinational observational study [J]. Crit Care Med, 2017, 45 (2): 156-163. DOI: 10.1097/CCM.0000000000002083. Machado Dos Reis A, Marchetti J, Forte Dos Santos A, et al. NUTRIC score: isolated and combined use with the NRS-2002 to predict hospital mortality in critically ill patients [J]. JPEN J Parenter Enteral Nutr, 2020, 44 (7): 1250-1256. DOI: 10.1002/jpen.1804. Viana MV, Pantet O, Bagnoud G, et al. Metabolic and nutritional characteristics of long-stay critically ill patients [J]. J Clin Med, 2019, 8 (7): 985. DOI: 10.3390/jcm8070985. Marchetti J, Reis AMD, Santos AFD, et al. High nutritional risk is associated with unfavorable outcomes in patients admitted to an intensive care unit [J]. Rev Bras Ter Intensiva, 2019, 31 (3): 326-332. DOI: 10.5935/0103-507X.20190041. Li G, Zhou CL, Ba YM, et al. Nutritional risk and therapy for severe and critical COVID-19 patients: a multicenter retrospective observational study [J]. Clin Nutr, 2021, 40 (4): 2154-2161. DOI: 10.1016/j.clnu.2020.09.040. Chourdakis M, Grammatikopoulou MG, Poulia KA, et al. Translation of the modified NUTRIC score and adaptation to the Greek ICU setting [J]. Clin Nutr ESPEN, 2019, 29: 72-76. DOI: 10.1016/j.clnesp.2018.12.003. Tsai MH, Huang HC, Peng YS, et al. Nutrition risk assessment using the modified NUTRIC score in cirrhotic patients with acute gastroesophageal variceal bleeding: prevalence of high nutrition risk and its independent prognostic value [J]. Nutrients, 2019, 11 (9): 2152. DOI: 10.3390/nu11092152. Oliveira ML, Heyland DK, Silva FM, et al. Complementarity of modified NUTRIC score with or without C-reactive protein and subjective global assessment in predicting mortality in critically ill patients [J]. Rev Bras Ter Intensiva, 2019, 31 (4): 490-496. DOI: 10.5935/0103-507X.20190086. Jeong DH, Hong SB, Lim CM, et al. Comparison of accuracy of NUTRIC and modified NUTRIC scores in predicting 28-day mortality in patients with sepsis: a single center retrospective study [J]. Nutrients, 2018, 10 (7): 911. DOI: 10.3390/nu10070911. Lew CCH, Wong GJY, Cheung KP, et al. The association between nutritional adequacy and 28-day mortality in the critically ill is not modified by their baseline nutritional status and disease severity [J]. Crit Care, 2019, 23 (1): 222. DOI: 10.1186/s13054-019-2500-z. Mayr U, Pfau J, Lukas M, et al. NUTRIC and modified NUTRIC are accurate predictors of outcome in end-stage liver disease: a validation in critically ill patients with liver cirrhosis [J]. Nutrients, 2020, 12 (7): 2134. DOI: 10.3390/nu12072134. Majari K, Imani H, Hosseini S, et al. Comparison of modified NUTRIC, NRS-2002, and MUST scores in Iranian critically ill patients admitted to intensive care units: a prospective cohort study [J]. JPEN J Parenter Enteral Nutr, 2021, 45 (7): 1504-1513. DOI: 10.1002/jpen.2031. Zhang P, Bian Y, Tang ZP, et al. Use of nutrition risk in critically ill (NUTRIC) scoring system for nutrition risk assessment and prognosis prediction in critically ill neurological patients: a prospective observational study [J]. JPEN J Parenter Enteral Nutr, 2021, 45 (5): 1032-1041. DOI: 10.1002/jpen.1977. Brascher JMM, Peres WAF, Padilha PC. Use of the modified "Nutrition Risk in the critically ill" score and its association with the death of critically ill patients [J]. Clin Nutr ESPEN, 2020, 35: 162-166. DOI: 10.1016/j.clnesp.2019.10.005. Lew CCH, Cheung KP, Chong MFF, et al. Combining 2 commonly adopted nutrition instruments in the critical care setting is superior to administering either one alone [J]. JPEN J Parenter Enteral Nutr, 2017: 148607117726060. DOI: 10.1177/0148607117726060. Ata Ur-Rehman HM, Ishtiaq W, Yousaf M, et al. Modified nutrition risk in critically ill (mNUTRIC) score to assess nutritional risk in mechanically ventilated patients: a prospective observational study from the pakistani population [J]. Cureus, 2018, 10 (12): e3786. DOI: 10.7759/cureus.3786. Kumar S, Gattani SC, Baheti AH, et al. Comparison of the performance of APACHEⅡ, SOFA, and mNUTRIC scoring systems in critically ill patients: a 2-year cross-sectional study [J]. Indian J Crit Care Med, 2020, 24 (11): 1057-1061. DOI: 10.5005/jp-journals-10071-23549. Lew CCH, Wong GJY, Cheung KP, et al. When timing and dose of nutrition support were examined, the modified nutrition risk in critically ill (mNUTRIC) score did not differentiate high-risk patients who would derive the most benefit from nutrition support: a prospective cohort study [J]. Ann Intensive Care, 2018, 8 (1): 98. DOI: 10.1186/s13613-018-0443-1. da Silva Fink J, Daniel de Mello P, Daniel de Mello E. Subjective global assessment of nutritional status: a systematic review of the literature [J]. Clin Nutr, 2015, 34 (5): 785-792. DOI: 10.1016/j.clnu.2014.12.014. Caporossi FS, Caporossi C, Borges Dock-Nascimento D, et al. Measurement of the thickness of the adductor pollicis muscle as a predictor of outcome in critically ill patients [J]. Nutr Hosp, 2012, 27 (2): 490-495. DOI: 10.1590/S0212-16112012000200021. Lomivorotov VV, Efremov SM, Boboshko VA, et al. Prognostic value of nutritional screening tools for patients scheduled for cardiac surgery [J]. Interact Cardiwasc Thorac Surg, 2013, 16 (5): 612-618. DOI: 10.1093/icvts/ivs549. Fontes D, Generoso Sde V, Toulson Davisson Correia MI. Subjective global assessment: a reliable nutritional assessment tool to predict outcomes in critically ill patients [J]. Clin Nutr, 2014, 33 (2): 291-295. DOI: 10.1016/j.clnu.2013.05.004. Sheean PM, Peterson SJ, Gurka DP, et al. Nutrition assessment: the reproducibility of subjective global assessment in patients requiring mechanical ventilation [J]. Eur J Clin Nutr, 2010, 64 (11): 1358-1364. DOI: 10.1038/ejcn.2010.154. Guigoz Y. The Mini Nutritional Assessment (MNA) review of the literature: what does it tell us? [J]. J Nutr Health Aging, 2006, 10 (6): 466-485; discussion 485-487. Dent E, Visvanathan R, Piantadosi C, et al. Use of the Mini Nutritional Assessment to detect frailty in hospitalised older people [J]. J Nutr Health Aging, 2012, 16 (9): 764-767. DOI: 10.1007/s12603-012-0405-5. Lew CCH, Yandell R, Fraser RJL, et al. Association between malnutrition and clinical outcomes in the intensive care unit: a systematic review [J]. JPEN J Parenter Enteral Nutr, 2017, 41 (5): 744-758. DOI: 10.1177/0148607115625638. Sheean PM, Peterson SJ, Chen YM, et al. Utilizing multiple methods to classify malnutrition among elderly patients admitted to the medical and surgical intensive care units (ICU) [J]. Clin Nutr, 2013, 32 (5): 752-757. DOI: 10.1016/j.clnu.2012.12.012. Merli M, Giusto M, Gentili F, et al. Nutritional status: its influence on the outcome of patients undergoing liver transplantation [J]. Liver Int, 2010, 30 (2): 208-214. DOI: 10.1111/j.1478-3231.2009.02135.x. Gattermann Pereira T, da Silva Fink J, Tosatti JAG, et al. Subjective global assessment can be performed in critically ill surgical patients as a predictor of poor clinical outcomes [J]. Nutr Clin Pract, 2019, 34 (1): 131-136. DOI: 10.1002/ncp.10178. Karst FP, Vieira RM, Barbiero S. Relationship between adductor pollicis muscle thickness and subjective global assessment in a cardiac intensive care unit [J]. Rev Bras Ter Intensiva, 2015, 27 (4): 369-375. DOI: 10.5935/0103-507X.20150062. Sheean PM, Peterson SJ, Zhao WH, et al. Intensive medical nutrition therapy: methods to improve nutrition provision in the critical care setting [J]. J Acad Nutr Diet, 2012, 112 (7): 1073-1079. DOI: 10.1016/j.jand.2012.02.007. Atalay BG, Yagmur C, Nursal TZ, et al. Use of subjective global assessment and clinical outcomes in critically ill geriatric patients receiving nutrition support [J]. JPEN J Parenter Enteral Nutr, 2008, 32 (4): 454-459. DOI: 10.1177/0148607108314369. Bector S, Vagianos K, Suh M, et al. Does the subjective global assessment predict outcome in critically ill medical patients? [J]. J Intensive Care Med, 2016, 31 (7): 485-489. DOI: 10.1177/0885066615596325. Sungurtekin H, Sungurtekin U, Oner O, et al. Nutrition assessment in critically ill patients [J]. Nutr Clin Pract, 2008, 23 (6): 635-641. DOI: 10.1177/0884533608326137. Verghese PP, Mathai AS, Abraham V, et al. Assessment of malnutrition and enteral feeding practices in the critically ill: a single-centre observational study [J]. Indian J Anaesth, 2018, 62 (1): 29-35. DOI: 10.4103/ija.IJA_513_17. Spiekerman AM. Nutritional assessment (protein nutriture) [J]. Anal Chem, 1995, 67 (12): 429R-436R. DOI: 10.1021/ac00108a026. Cui NN, Tong HH, Li Y, et al. Role of prealbumin in predicting the prognosis of severely and critically ill COVID-19 patients [J]. Am J Trop Med Hyg, 2021, 105 (3): 718-726. DOI: 10.4269/ajtmh.21-0234. 毕红英唐艳王迪芬.重症患者的营养风险评估及其预后分析[J].中华危重病急救医学, 2016, 28 (6): 557-562. DOI: 10.3760/cma.j.issn.2095-4352.2016.06.017. Bretschera C, Boesiger F, Kaegi-Braun N, et al. Admission serum albumin concentrations and response to nutritional therapy in hospitalised patients at malnutrition risk: secondary analysis of a randomised clinical trial [J]. EClinicalMedicine, 2022, 45: 101301. DOI: 10.1016/j.eclinm.2022.101301. Bretscher C, Buergin M, Gurzeler G, et al. Association between prealbumin, all-cause mortality, and response to nutrition treatment in patients at nutrition risk: secondary analysis of a randomized controlled trial [J]. JPEN J Parenter Enteral Nutr, 2023, 47 (3): 408-419. DOI: 10.1002/jpen.2470. Stoppe C, Wendt S, Mehta NM, et al. Biomarkers in critical care nutrition [J]. Crit Care, 2020, 24 (1): 499. DOI: 10.1186/s13054-020-03208-7. Davis CJ, Sowa D, Keim KS, et al. The use of prealbumin and C-reactive protein for monitoring nutrition support in adult patients receiving enteral nutrition in an urban medical center [J]. JPEN J Parenter Enteral Nutr, 2012, 36 (2): 197-204. DOI: 10.1177/0148607111413896. Yeh DD, Johnson E, Harrison T, et al. Serum levels of albumin and prealbumin do not correlate with nutrient delivery in surgical intensive care unit patients [J]. Nutr Clin Pract, 2018, 33 (3): 419-425. DOI: 10.1002/ncp.10087. Evans DC, Corkins MR, Malone A, et al. The use of visceral proteins as nutrition markers: an ASPEN position paper [J]. Nutr Clin Pract, 2021, 36 (1): 22-28. DOI: 10.1002/ncp.10588. Moisey LL, Mourtzakis M, Cotton BA, et al. Skeletal muscle predicts ventilator-free days, ICU-free days, and mortality in elderly ICU patients [J]. Crit Care, 2013, 17 (5): R206. DOI: 10.1186/cc12901. Puthucheary ZA, Rawal J, McPhail M, et al. Acute skeletal muscle wasting in critical illness [J]. JAMA, 2013, 310 (15): 1591-1600. DOI: 10.1001/jama.2013.278481. Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states [J]. J Am Soc Nephrol, 2006, 17 (7): 1807-1819. DOI: 10.1681/ASN.2006010083. Masiero E, Agatea L, Mammucari C, et al. Autophagy is required to maintain muscle mass [J]. Cell Metab, 2009, 10 (6): 507-515. DOI: 10.1016/j.cmet.2009.10.008. Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness [J]. Intensive Care Med, 2020, 46 (4): 637-653. DOI: 10.1007/s00134-020-05944-4. Puthucheary Z, Montgomery H, Moxham J, et al. Structure to function: muscle failure in critically ill patients [J]. J Physiol, 2010, 588 (Pt 23): 4641-4648. DOI: 10.1113/jphysiol.2010.197632. Schefold JC, Wollersheim T, Grunow JJ, et al. Muscular weakness and muscle wasting in the critically ill [J]. J Cachexia Sarcopenia Muscle, 2020, 11 (6): 1399-1412. DOI: 10.1002/jcsm.12620. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis [J]. Age Ageing, 2019, 48 (1): 16-31. DOI: 10.1093/ageing/afy169. Parry SM, El-Ansary D, Cartwright MS, et al. Ultrasonography in the intensive care setting can be used to detect changes in the quality and quantity of muscle and is related to muscle strength and function [J]. J Crit Care, 2015, 30 (5): 1151.e9-e14. DOI: 10.1016/j.jcrc.2015.05.024. Razzera EL, Marcadenti A, Rovedder SW, et al. Parameters of bioelectrical impedance are good predictors of nutrition risk, length of stay, and mortality in critically ill patients: a prospective cohort study [J]. JPEN J Parenter Enteral Nutr, 2020, 44 (5): 849-854. DOI: 10.1002/jpen.1694. Mayer KP, Thompson Bastin ML, Montgomery-Yates AA, et al. Acute skeletal muscle wasting and dysfunction predict physical disability at hospital discharge in patients with critical illness [J]. Crit Care, 2020, 24 (1): 637. DOI: 10.1186/s13054-020-03355-x. Jiang TT, Lin TP, Shu XY, et al. Prevalence and prognostic value of preexisting sarcopenia in patients with mechanical ventilation: a systematic review and meta-analysis [J]. Crit Care, 2022, 26 (1): 140. DOI: 10.1186/s13054-022-04015-y. Tagawa R, Watanabe D, Ito K, et al. Dose-response relationship between protein intake and muscle mass increase: a systematic review and meta-analysis of randomized controlled trials [J]. Nutr Rev, 2020, 79 (1): 66-75. DOI: 10.1093/nutrit/nuaa104. Hickmann CE, Castanares-Zapatero D, Deldicque L, et al. Impact of very early physical therapy during septic shock on skeletal muscle: a randomized controlled trial [J]. Crit Care Med, 2018, 46 (9): 1436-1443. DOI: 10.1097/CCM.0000000000003263. Hwang Y, Lee YH, Cho DH, et al. Applicability of the masseter muscle as a nutritional biomarker [J]. Medicine (Baltimore), 2020, 99 (6): e19069. DOI: 10.1097/MD.0000000000019069. Özdemir U, Özdemir M, Aygencel G, et al. The role of maximum compressed thickness of the quadriceps femoris muscle measured by ultrasonography in assessing nutritional risk in critically-ill patients with different volume statuses [J]. Rev Assoc Med Bras (1992), 2019, 65 (7): 952-958. DOI: 10.1590/1806-9282.65.7.952. 李强李雪霓冷玉鑫.多频生物电阻抗技术评估重度营养不良患者营养状态:一项多中心前瞻性研究[J].中华危重病急救医学, 2018, 30 (2): 181-184. DOI: 10.3760/cma.j.issn.2095-4352.2018.02.017. Sunario J, Wibrow B, Jacques A, et al. Associations between nutrition markers and muscle mass on bioimpedance analysis in patients receiving parenteral nutrition [J]. JPEN J Parenter Enteral Nutr, 2021, 45 (5): 1089-1099. DOI: 10.1002/jpen.1986. Pereira TG, da Silva Fink J, Silva FM. Thickness of the adductor pollicis muscle: accuracy in predicting malnutrition and length of intensive care unit stay in critically ill surgical patients: thickness of the adductor pollicis muscle in surgical critically patients [J]. Clin Nutr ESPEN, 2018, 24: 165-169. DOI: 10.1016/j.clnesp.2017.10.013. Mitsiopoulos N, Baumgartner RN, Heymsfield SB, et al. Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography [J]. J Appl Physiol (1985), 1998, 85 (1): 115-122. DOI: 10.1152/jappl.1998.85.1.115. Bury C, DeChicco R, Nowak D, et al. Use of bedside ultrasound to assess muscle changes in the critically ill surgical patient [J]. JPEN J Parenter Enteral Nutr, 2021, 45 (2): 394-402. DOI: 10.1002/jpen.1840. Lambell KJ, Tierney AC, Wang JC, et al. Comparison of ultrasound-derived muscle thickness with computed tomography muscle cross-sectional area on admission to the intensive care unit: a pilot cross-sectional study [J]. JPEN J Parenter Enteral Nutr, 2021, 45 (1): 136-145. DOI: 10.1002/jpen.1822. Arai Y, Nakanishi N, Ono Y, et al. Ultrasound assessment of muscle mass has potential to identify patients with low muscularity at intensive care unit admission: a retrospective study [J]. Clin Nutr ESPEN, 2021, 45: 177-183. DOI: 10.1016/j.clnesp.2021.08.032. Tourel C, Burnol L, Lanoiselé J, et al. Reliability of standardized ultrasound measurements of quadriceps muscle thickness in neurological critically ill patients: a comparison to computed tomography measures [J]. J Rehabil Med, 2020, 52 (3): jrm00032. DOI: 10.2340/16501977-2638. Paris MT, Mourtzakis M, Day A, et al. Validation of bedside ultrasound of muscle layer thickness of the quadriceps in the critically ill patient (VALIDUM study) [J]. JPEN J Parenter Enteral Nutr, 2017, 41 (2): 171-180. DOI: 10.1177/0148607116637852. Fetterplace K, Corlette L, Abdelhamid YA, et al. Assessment of muscle mass using ultrasound with minimal versus maximal pressure compared with computed tomography in critically ill adult patients [J]. Aust Crit Care, 2021, 34 (4): 303-310. DOI: 10.1016/j.aucc.2020.10.008. Baldwin CE, Bersten AD. Alterations in respiratory and limb muscle strength and size in patients with sepsis who are mechanically ventilated [J]. Phys Ther, 2014, 94 (1): 68-82. DOI: 10.2522/ptj.20130048. Segers J, Hermans G, Charususin N, et al. Assessment of quadriceps muscle mass with ultrasound in critically ill patients: intra- and inter-observer agreement and sensitivity [J]. Intensive Care Med, 2015, 41 (3): 562-563. DOI: 10.1007/s00134-015-3668-6. Pita A, Ziogas IA, Ye F, et al. Feasibility of serial ultrasound measurements of the rectus femoris muscle area to assess muscle loss in patients awaiting liver transplantation in the intensive care unit [J]. Transplant Direct, 2020, 6 (11): e618. DOI: 10.1097/TXD.0000000000001067. Sabatino A, Regolisti G, di Mario F, et al. Validation by CT scan of quadriceps muscle thickness measurement by ultrasound in acute kidney injury [J]. J Nephrol, 2020, 33 (1): 109-117. DOI: 10.1007/s40620-019-00659-2. Weinel LM, Summers MJ, Chapple LA. Ultrasonography to measure quadriceps muscle in critically ill patients: a literature review of reported methodologies [J]. Anaesth Intensive Care, 2019, 47 (5): 423-434. DOI: 10.1177/0310057X19875152. Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis. PartⅠ: review of principles and methods [J]. Clin Nutr, 2004, 23 (5): 1226-1243. DOI: 10.1016/j.clnu.2004.06.004. Mulasi U, Kuchnia AJ, Cole AJ, et al. Bioimpedance at the bedside: current applications, limitations, and opportunities [J]. Nutr Clin Pract, 2015, 30 (2): 180-193. DOI: 10.1177/0884533614568155. Moonen HPFX, Van Zanten ARH. Bioelectric impedance analysis for body composition measurement and other potential clinical applications in critical illness [J]. Curr Opin Crit Care, 2021, 27 (4): 344-353. DOI: 10.1097/MCC.0000000000000840. Mundi MS, Patel JJ, Martindale R. Body composition technology: implications for the ICU [J]. Nutr Clin Pract, 2019, 34 (1): 48-58. DOI: 10.1002/ncp.10230. Pardo E, El Behi H, Boizeau P, et al. Reliability of ultrasound measurements of quadriceps muscle thickness in critically ill patients [J]. BMC Anesthesiol, 2018, 18 (1): 205. DOI: 10.1186/s12871-018-0647-9. Looijaard WGPM, Stapel SN, Dekker IM, et al. Identifying critically ill patients with low muscle mass: agreement between bioelectrical impedance analysis and computed tomography [J]. Clin Nutr, 2020, 39 (6): 1809-1817. DOI: 10.1016/j.clnu.2019.07.020. Kim D, Sun JS, Lee YH, et al. Comparative assessment of skeletal muscle mass using computerized tomography and bioelectrical impedance analysis in critically ill patients [J]. Clin Nutr, 2019, 38 (6): 2747-2755. DOI: 10.1016/j.clnu.2018.12.002. Lambell KJ, Earthman CP, Tierney AC, et al. How does muscularity assessed by bedside methods compare to computed tomography muscle area at intensive care unit admission? A pilot prospective cross-sectional study [J]. J Hum Nutr Diet, 2021, 34 (2): 345-355. DOI: 10.1111/jhn.12804. Kuchnia A, Earthman C, Teigen L, et al. Evaluation of bioelectrical impedance analysis in critically ill patients: results of a multicenter prospective study [J]. JPEN J Parenter Enteral Nutr, 2017, 41 (7): 1131-1138. DOI: 10.1177/0148607116651063. 孙仁华江荣林黄曼.重症患者早期肠内营养临床实践专家共识[J].中华危重病急救医学, 2018, 30 (8): 715-721. DOI: 10.3760/cma.j.issn.2095-4352.2018.08.001. 中国急诊危重症患者肠内营养治疗专家共识组.中国急诊危重症患者肠内营养治疗专家共识[J].中华急诊医学杂志, 2022, 31 (3): 281-290. DOI: 10.3760/cma.j.issn.1671-0282.2022.03.004. Preiser JC, Arabi YM, Berger MM, et al. A guide to enteral nutrition in intensive care units: 10 expert tips for the daily practice [J]. Crit Care, 2021, 25 (1): 424. DOI: 10.1186/s13054-021-03847-4. Reintam Blaser A, Malbrain MLNG, Starkopf J, et al. Gastrointestinal function in intensive care patients: terminology, definitions and management. Recommendations of the ESICM Working Group on abdominal problems [J]. Intensive Care Med, 2012, 38 (3): 384-394. DOI: 10.1007/s00134-011-2459-y. Li JB, Wang LJ, Zhang H, et al. Different definitions of feeding intolerance and their associations with outcomes of critically ill adults receiving enteral nutrition: a systematic review and meta-analysis [J]. J Intensive Care, 2023, 11 (1): 29. DOI: 10.1186/s40560-023-00674-3. Blaser AR, Starkopf J, Kirsimägi ü, et al. Definition, prevalence, and outcome of feeding intolerance in intensive care: a systematic review and meta-analysis [J]. Acta Anaesthesiol Scand, 2014, 58 (8): 914-922. DOI: 10.1111/aas.12302. Jenkins B, Calder PC, Marino LV. A systematic review of the definitions and prevalence of feeding intolerance in critically ill adults [J]. Clin Nutr ESPEN, 2022, 49: 92-102. DOI: 10.1016/j.clnesp.2022.04.014. Buisman WJ, Mauritz FA, Westerhuis WE, et al. Evaluation of gastric volumes: comparison of 3-D ultrasound and magnetic resonance imaging [J]. Ultrasound Med Biol, 2016, 42 (7): 1423-1430. DOI: 10.1016/j.ultrasmedbio.2016.01.031. Shi JJ, Shen HM, Gao Q, et al. Evaluation of gastric emptying in patients with gastroparesis by three-dimensional ultrasound [J]. Ann Transl Med, 2021, 9 (16): 1343. DOI: 10.21037/atm-21-3972. Bejarano N, Navarro S, Rebasa P, et al. Intra-abdominal pressure as a prognostic factor for tolerance of enteral nutrition in critical patients [J]. JPEN J Parenter Enteral Nutr, 2013, 37 (3): 352-360. DOI: 10.1177/0148607112464238. Brown RO, Alexander E Jr, Hanes SD, et al. Procalcitonin and enteral nutrition tolerance in critically ill patients [J]. JPEN J Parenter Enteral Nutr, 2003, 27 (1): 84-88. DOI: 10.1177/014860710302700184. Faramarzi E, Mahmoodpoor A, Hamishehkar H, et al. Effect of gastric residual volume monitoring on incidence of ventilator-associated pneumonia in mechanically ventilated patients admitted to intensive care unit [J]. Pak J Med Sci, 2020, 36 (2): 48-53. DOI: 10.12669/pjms.36.2.1321. Hu BC, Sun RH, Wu AP, et al. Prognostic value of prolonged feeding intolerance in predicting all-cause mortality in critically ill patients: a multicenter, prospective, observational study [J]. JPEN J Parenter Enteral Nutr, 2020, 44 (5): 855-865. DOI: 10.1002/jpen.1693. Padar M, Starkopf J, Starkopf L, et al. Enteral nutrition and dynamics of citrulline and intestinal fatty acid-binding protein in adult ICU patients [J]. Clin Nutr ESPEN, 2021, 45: 322-332. DOI: 10.1016/j.clnesp.2021.07.026. Lin YJ, Chen MH, Peng YC, et al. Feeding intolerance and risk of poor outcome in patients undergoing cardiopulmonary bypass surgery [J]. Br J Nutr, 2021, 126 (9): 1340-1346. DOI: 10.1017/S0007114521000167. Mentec H, Dupont H, Bocchetti M, et al. Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications [J]. Crit Care Med, 2001, 29 (10): 1955-1961. DOI: 10.1097/00003246-200110000-00018. Reintam Blaser A, Starkopf L, Deane AM, et al. Comparison of different definitions of feeding intolerance: a retrospective observational study [J]. Clin Nutr, 2015, 34 (5): 956-961. DOI: 10.1016/j.clnu.2014.10.006. Yahyapoor F, Dehnavi Z, Askari G, et al. The prevalence and possible causes of enteral tube feeding intolerance in critically ill patients: a cross-sectional study [J]. J Res Med Sci, 2021, 26: 60. DOI: 10.4103/jrms.JRMS_689_20. 呼邦传孙仁华吴爱萍. ICU内喂养不耐受与重症患者临床预后的相关研究:一项多中心、前瞻性、观察性研究[J].中华急诊医学杂志, 2017, 26 (4): 434-440. DOI: 10.3760/cma.j.issn.1671-0282.2017.04.016. Drakos P, Volteas P, Cleri NA, et al. Acute gastrointestinal injury and feeding intolerance as prognostic factors in critically ill COVID-19 patients [J]. J Gastrointest Surg, 2022, 26 (1): 181-190. DOI: 10.1007/s11605-021-05015-z. Gungabissoon U, Hacquoil K, Bains C, et al. Prevalence, risk factors, clinical consequences, and treatment of enteral feed intolerance during critical illness [J]. JPEN J Parenter Enteral Nutr, 2015, 39 (4): 441-448. DOI: 10.1177/0148607114526450. Heyland DK, Ortiz A, Stoppe C, et al. Incidence, risk factors, and clinical consequence of enteral feeding intolerance in the mechanically ventilated critically ill: an analysis of a multicenter, multiyear database [J]. Crit Care Med, 2021, 49 (1): 49-59. DOI: 10.1097/CCM.0000000000004712. Hu KL, Deng XL, Han L, et al. Development and validation of a predictive model for feeding intolerance in intensive care unit patients with sepsis [J]. Saudi J Gastroenterol, 2022, 28 (1): 32-38. DOI: 10.4103/sjg.sjg_286_21. Li H, Yang ZY, Tian F. Risk factors associated with intolerance to enteral nutrition in moderately severe acute pancreatitis: a retrospective study of 568 patients [J]. Saudi J Gastroenterol, 2019, 25 (6): 362-368. DOI: 10.4103/sjg.SJG_550_18. Lin JJ, Liu Y, Ke L, et al. Feeding intolerance score in critically ill patients with enteral nutrition: a post hoc analysis of a prospective study [J]. Nutr Clin Pract, 2022, 37 (4): 869-877. DOI: 10.1002/ncp.10788. Liu R, Paz M, Siraj L, et al. Feeding intolerance in critically ill patients with COVID-19 [J]. Clin Nutr, 2022, 41 (12): 3069-3076. DOI: 10.1016/j.clnu.2021.03.033. Mao Z, Liu GX, Yu Q, et al. Association between serum lactate levels and enteral feeding intolerance in septic patients treated with vasopressors: a retrospective cohort study [J]. Ann Transl Med, 2020, 8 (19): 1240. DOI: 10.21037/atm-20-6317. Merchan C, Altshuler D, Aberle C, et al. Tolerability of enteral nutrition in mechanically ventilated patients with septic shock who require vasopressors [J]. J Intensive Care Med, 2017, 32 (9): 540-546. DOI: 10.1177/0885066616656799. Nguyen N, Ching K, Fraser R, et al. The relationship between blood glucose control and intolerance to enteral feeding during critical illness [J]. Intensive Care Med, 2007, 33 (12): 2085-2092. DOI: 10.1007/s00134-007-0869-7. Lam SW, Nguyen NQ, Ching K, et al. Gastric feed intolerance is not increased in critically ill patients with typeⅡdiabetes mellitus [J]. Intensive Care Med, 2007, 33 (10): 1740-1745. DOI: 10.1007/s00134-007-0712-1. Sierp EL, Kurmis R, Lange K, et al. Nutrition and gastrointestinal dysmotility in critically ill burn patients: a retrospective observational study [J]. JPEN J Parenter Enteral Nutr, 2021, 45 (5): 1052-1060. DOI: 10.1002/jpen.1979. Stevens AM, Then JE, Frock KM, et al. Evaluation of feeding intolerance in patients with pentobarbital-induced coma [J]. Ann Pharmacother, 2008, 42 (4): 516-522. DOI: 10.1345/aph.1K555. Virani FR, Peery T, Rivas O, et al. Incidence and effects of feeding intolerance in trauma patients [J]. JPEN J Parenter Enteral Nutr, 2019, 43 (6): 742-749. DOI: 10.1002/jpen.1469. Wang KL, McIlroy K, Plank LD, et al. Prevalence, outcomes, and management of enteral tube feeding intolerance: a retrospective cohort study in a tertiary center [J]. JPEN J Parenter Enteral Nutr, 2017, 41 (6): 959-967. DOI: 10.1177/0148607115627142. Wang LP, Yang H, Lyu GX, et al. Association of gastric antrum echodensity and acute gastrointestinal injury in critically ill patients [J]. Nutrients, 2022, 14 (3): 566. DOI: 10.3390/nu14030566. Reintam Blaser A, Deane AM, Preiser JC, et al. Enteral feeding intolerance: updates in definitions and pathophysiology [J]. Nutr Clin Pract, 2021, 36 (1): 40-49. DOI: 10.1002/ncp.10599. Perlas A, Mitsakakis N, Liu L, et al. Validation of a mathematical model for ultrasound assessment of gastric volume by gastroscopic examination [J]. Anesth Analg, 2013, 116 (2): 357-363. DOI: 10.1213/ANE.0b013e318274fc19. Van de Putte P, Perlas A. Ultrasound assessment of gastric content and volume [J]. Br J Anaesth, 2014, 113 (1): 12-22. DOI: 10.1093/bja/aeu151. Bouvet L, Zieleskiewicz L, Loubradou E, et al. Reliability of gastric suctioning compared with ultrasound assessment of residual gastric volume: a prospective multicentre cohort study [J]. Anaesthesia, 2020, 75 (3): 323-330. DOI: 10.1111/anae.14915. 陈闯徐杰丰刘少云.超声监测ICU危重患者胃残余量和预测肠内营养不耐受研究[J].中华急诊医学杂志, 2020, 29 (10): 1291-1295. DOI: 10.3760/cma.j.issn.1671-0282.2020.10.005. 邹同娟冉启芳尹万红.床旁超声测量胃窦横截面积对重症患者喂养不耐受的预测价值[J].四川大学学报(医学版), 2019, 50 (6): 815-820. Gao T, Cheng MH, Xi FC, et al. Predictive value of transabdominal intestinal sonography in critically ill patients: a prospective observational study [J]. Crit Care, 2019, 23 (1): 378. DOI: 10.1186/s13054-019-2645-9. Malbrain MLNG, Chiumello D, Pelosi P, et al. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study [J]. Crit Care Med, 2005, 33 (2): 315-322. DOI: 10.1097/01.ccm.0000153408.09806.1b. Smit M, van Meurs M, Zijlstra JG. Intra-abdominal hypertension and abdominal compartment syndrome in critically ill patients: a narrative review of past, present, and future steps [J]. Scand J Surg, 2022, 111 (1): 14574969211030128. DOI: 10.1177/14574969211030128. Malbrain MLNG, Chiumello D, Cesana BM, et al. A systematic review and individual patient data meta-analysis on intra-abdominal hypertension in critically ill patients: the wake-up project. World initiative on Abdominal Hypertension Epidemiology, a Unifying Project (WAKE-Up!) [J]. Minerva Anestesiol, 2014, 80 (3): 293-306. Reintam Blaser A, Preiser JC, Fruhwald S, et al. Gastrointestinal dysfunction in the critically ill: a systematic scoping review and research agenda proposed by the Section of Metabolism, Endocrinology and Nutrition of the European Society of Intensive Care Medicine [J]. Crit Care, 2020, 24 (1): 224. DOI: 10.1186/s13054-020-02889-4. Reintam Blaser A, Parm P, Kitus R, et al. Intra-abdominal hypertension and gastrointestinal symptoms in mechanically ventilated patients [J]. Crit Care Res Pract, 2011, 2011: 982507. DOI: 10.1155/2011/982507. Murcia-Sáez IM, Sobrino-Hernandez ML, García-Lopez F, et al. Usefulness of intra-abdominal pressure in a predominantly medical intensive care unit [J]. J Crit Care, 2010, 25 (1): 175.e1-e6. DOI: 10.1016/j.jcrc.2009.05.017. Bordejé ML, Montejo JC, Mateu ML, et al. Intra-abdominal pressure as a marker of enteral nutrition intolerance in critically ill patients. The PIANE study [J]. Nutrients, 2019, 11 (11): 2616. DOI: 10.3390/nu11112616. Du LQ, Zhao YY, Yin CH, et al. The applied research on the intra-abdominal pressure monitoring in early enteral nutrition in patients with severe pneumonia [J]. Am J Transl Res, 2021, 13 (6): 6987-6993. Du LQ, Zhao YY, Yin CH, et al. Application of intra-abdominal pressure monitoring in early enteral nutrition after abdominal surgery [J]. Am J Transl Res, 2021, 13 (6): 7140-7147. Frankenfield DC, Coleman A, Alam S, et al. Analysis of estimation methods for resting metabolic rate in critically ill adults [J]. JPEN J Parenter Enteral Nutr, 2009, 33 (1): 27-36. DOI: 10.1177/0148607108322399. Zusman O, Kagan I, Bendavid I, et al. Predictive equations versus measured energy expenditure by indirect calorimetry: a retrospective validation [J]. Clin Nutr, 2019, 38 (3): 1206-1210. DOI: 10.1016/j.clnu.2018.04.020. Tatucu-Babet OA, Ridley EJ, Tierney AC. Prevalence of underprescription or overprescription of energy needs in critically ill mechanically ventilated adults as determined by indirect calorimetry: a systematic literature review [J]. JPEN J Parenter Enteral Nutr, 2016, 40 (2): 212-225. DOI: 10.1177/0148607114567898. Duan JY, Zheng WH, Zhou H, et al. Energy delivery guided by indirect calorimetry in critically ill patients: a systematic review and meta-analysis [J]. Crit Care, 2021, 25 (1): 88. DOI: 10.1186/s13054-021-03508-6. Rattanachaiwong S, Singer P. Should we calculate or measure energy expenditure? Practical aspects in the ICU [J]. Nutrition, 2018, 55-56: 71-75. DOI: 10.1016/j.nut.2018.05.001. Singer P, Singer J. Clinical guide for the use of metabolic carts: indirect calorimetry. No longer the orphan of energy estimation [J]. Nutr Clin Pract, 2016, 31 (1): 30-38. DOI: 10.1177/0884533615622536. Smyrnios NA, Curley FJ, Shaker KG. Accuracy of 30-minute indirect calorimetry studies in predicting 24-hour energy expenditure in mechanically ventilated, critically ill patients [J]. JPEN J Parenter Enteral Nutr, 1997, 21 (3): 168-174. DOI: 10.1177/0148607197021003168. McClave SA, Lowen CC, Kleber MJ, et al. Clinical use of the respiratory quotient obtained from indirect calorimetry [J]. JPEN J Parenter Enteral Nutr, 2003, 27 (1): 21-26. DOI: 10.1177/014860710302700121. Singer P, Anbar R, Cohen J, et al. The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients [J]. Intensive Care Med, 2011, 37 (4): 601-609. DOI: 10.1007/s00134-011-2146-z. Landes S, Mcclave SA, Frazier TH, et al. Indirect calorimetry: is it required to maximize patient outcome from nutrition therapy? [J]. Current Nutrition Reports, 2016, 5 (3): 1-7. DOI: 10.1007/s13668-016-0171-9. Allingstrup MJ, Kondrup J, Wiis J, et al. Early goal-directed nutrition versus standard of care in adult intensive care patients: the single-centre, randomised, outcome assessor-blinded EAT-ICU trial [J]. Intensive Care Med, 2017, 43 (11): 1637-1647. DOI: 10.1007/s00134-017-4880-3. Gonzalez-Granda A, Schollenberger A, Haap M, et al. Optimization of nutrition therapy with the use of calorimetry to determine and control energy needs in mechanically ventilated critically ill patients: the ONCA study, a randomized, prospective pilot study [J]. JPEN J Parenter Enteral Nutr, 2019, 43 (4): 481-489. DOI: 10.1002/jpen.1450. 石俊席力罡迟天航.静息能量监测在机械通气患者营养支持治疗中的应用价值[J].中华危重病急救医学, 2019, 31 (1): 98-101. DOI: 10.3760/cma.j.issn.2095-4352.2019.01.019. 赵士兵段立彬余刚.应用代谢车监测ICU患者REE变化规律并指导营养支持的前瞻性研究[J].中华危重病急救医学, 2019, 31 (12): 1512-1516. DOI: 10.3760/cma.j.issn.2095-4352.2019.12.015. Singer P, De Waele E, Sanchez C, et al. TICACOS international: a multi-center, randomized, prospective controlled study comparing tight calorie control versus Liberal calorie administration study [J]. Clin Nutr, 2021, 40 (2): 380-387. DOI: 10.1016/j.clnu.2020.05.024. Zinellu A, Mangoni AA. Serum prealbumin concentrations, COVID-19 severity, and mortality: a systematic review and meta-analysis [J]. Front Med (Lausanne), 2021, 8: 638529. DOI: 10.3389/fmed.2021.638529. Akbar MR, Pranata R, Wibowo A, et al. The association between serum prealbumin and poor outcome in COVID-19. Systematic review and meta-analysis [J]. Eur Rev Med Pharmacol Sci, 2021, 25 (10): 3879-3885. DOI: 10.26355/eurrev_202105_25955. Mears E. Outcomes of continuous process improvement of a nutritional care program incorporating serum prealbumin measurements [J]. Nutrition, 1996, 12 (7-8): 479-484. DOI: 10.1016/s0899-9007(96)91721-9. Beck FK, Rosenthal TC. Prealbumin: a marker for nutritional evaluation [J]. Am Fam Physician, 2002, 65 (8): 1575-1578. Luo Y, Qian YX. Effect of combined parenteral and enteral nutrition for patients with a critical illness: a meta-analysis of randomized controlled trials [J]. Medicine (Baltimore), 2020, 99 (3): e18778. DOI: 10.1097/MD.0000000000018778. Hill GL, Witney GB, Christie PM, et al. Protein status and metabolic expenditure determine the response to intravenous nutrition: a new classification of surgical malnutrition [J]. Br J Surg, 1991, 78 (1): 109-113. DOI: 10.1002/bjs.1800780133. Devakonda A, George L, Raoof S, et al. Transthyretin as a marker to predict outcome in critically ill patients [J]. Clin Biochem, 2008, 41 (14-15): 1126-1130. DOI: 10.1016/j.clinbiochem.2008.06.016. Lim SH, Lee JS, Chae SH, et al. Prealbumin is not sensitive indicator of nutrition and prognosis in critical ill patients [J]. Yonsei Med J, 2005, 46 (1): 21-26. DOI: 10.3349/ymj.2005.46.1.21. Haines RW, Zolfaghari P, Wan Y, et al. Elevated urea-to-creatinine ratio provides a biochemical signature of muscle catabolism and persistent critical illness after major trauma [J]. Intensive Care Med, 2019, 45 (12): 1718-1731. DOI: 10.1007/s00134-019-05760-5. Zhang ZH, Ho KM, Gu HQ, et al. Defining persistent critical illness based on growth trajectories in patients with sepsis [J]. Crit Care, 2020, 24 (1): 57. DOI: 10.1186/s13054-020-2768-z. Demirjian S, Teo BW, Guzman JA, et al. Hypophosphatemia during continuous hemodialysis is associated with prolonged respiratory failure in patients with acute kidney injury [J]. Nephrol Dial Transplant, 2011, 26 (11): 3508-3514. DOI: 10.1093/ndt/gfr075. McDaniel J, Davuluri G, Hill EA, et al. Hyperammonemia results in reduced muscle function independent of muscle mass [J]. Am J Physiol Gastrointest Liver Physiol, 2016, 310 (3): G163-G170. DOI: 10.1152/ajpgi.00322.2015. Rugg C, Ströhle M, Treml B, et al. ICU-acquired hypernatremia is associated with persistent inflammation, immunosuppression and catabolism syndrome [J]. J Clin Med, 2020, 9 (9): 3017. DOI: 10.3390/jcm9093017. Haines RW, Fowler AJ, Wan YI, et al. Catabolism in critical illness: a reanalysis of the reducing deaths due to oxidative stress (REDOXS) trial [J]. Crit Care Med, 2022, 50 (7): 1072-1082. DOI: 10.1097/CCM.0000000000005499. Allingstrup MJ, Esmailzadeh N, Wilkens Knudsen A, et al. Provision of protein and energy in relation to measured requirements in intensive care patients [J]. Clin Nutr, 2012, 31 (4): 462-468. DOI: 10.1016/j.clnu.2011.12.006. Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute respiratory distress syndrome [J]. N Engl J Med, 2011, 364 (14): 1293-1304. DOI: 10.1056/NEJMoa1011802. Kritmetapak K, Peerapornratana S, Srisawat N, et al. The impact of macro-and micronutrients on predicting outcomes of critically ill patients requiring continuous renal replacement therapy [J]. PLoS One, 2016, 11 (6): e0156634. DOI: 10.1371/journal.pone.0156634. Duan KP, Gong MT, Gao X, et al. Change in urea to creatinine ratio is associated with postoperative complications and skeletal muscle wasting in pancreatic cancer patients following pancreatoduodenectomy [J]. Asia Pac J Clin Nutr, 2021, 30 (3): 374-382. DOI: 10.6133/apjcn.202109_30(3).0004. Heyland D, Muscedere J, Wischmeyer PE, et al. A randomized trial of glutamine and antioxidants in critically ill patients [J]. N Engl J Med, 2013, 368 (16): 1489-1497. DOI: 10.1056/NEJMoa1212722. Iwashyna TJ, Hodgson CL, Pilcher D, et al. Timing of onset and burden of persistent critical illness in Australia and New Zealand: a retrospective, population-based, observational study [J]. Lancet Respir Med, 2016, 4 (7): 566-573. DOI: 10.1016/S2213-2600(16)30098-4. Volbeda M, Hessels L, Posma RA, et al. Time courses of urinary creatinine excretion, measured creatinine clearance and estimated glomerular filtration rate over 30 days of ICU admission [J]. J Crit Care, 2021, 63: 161-166. DOI: 10.1016/j.jcrc.2020.09.017. Yucha CB, Toto KH. Calcium and phosphorus derangements [J]. Crit Care Nurs Clin North Am, 1994, 6 (4): 747-766. Schwartz A, Gurman G, Cohen G, et al. Association between hypophosphatemia and cardiac arrhythmias in the early stages of sepsis [J]. Eur J Intern Med, 2002, 13 (7): 434. DOI: 10.1016/s0953-6205(02)00130-9. Calabrese EJ, Baldwin LA. U-shaped dose-responses in biology, toxicology, and public health [J]. Annu Rev Public Health, 2001, 22: 15-33. DOI: 10.1146/annurev.publhealth.22.1.15. Boot R, Koekkoek KWA, van Zanten ARH. Refeeding syndrome: relevance for the critically ill patient [J]. Curr Opin Crit Care, 2018, 24 (4): 235-240. DOI: 10.1097/MCC.0000000000000514. Cioffi I, Ponzo V, Pellegrini M, et al. The incidence of the refeeding syndrome. A systematic review and meta-analyses of literature [J]. Clin Nutr, 2021, 40 (6): 3688-3701. DOI: 10.1016/j.clnu.2021.04.023. 刘博程玉梅沈锋.低磷血症与重症患者不良预后有关:一项1 555例患者的Meta分析[J].中华危重病急救医学, 2018, 30 (1): 34-40. DOI: 10.3760/cma.j.issn.2095-4352.2018.01.007. Sin JCK, King L, Ballard E, et al. Hypophosphatemia and outcomes in ICU: a systematic review and meta-analysis [J]. J Intensive Care Med, 2021, 36 (9): 1025-1035. DOI: 10.1177/0885066620940274. da Silva JSV, Seres DS, Sabino K, et al. ASPEN consensus recommendations for refeeding syndrome [J]. Nutr Clin Pract, 2020, 35 (2): 178-195. DOI: 10.1002/ncp.10474. Vankrunkelsven W, Gunst J, Amrein K, et al. Monitoring and parenteral administration of micronutrients, phosphate and magnesium in critically ill patients: the VITA-TRACE survey [J]. Clin Nutr, 2021, 40 (2): 590-599. DOI: 10.1016/j.clnu.2020.06.005. Zheng WH, Yao Y, Zhou H, et al. Hyperphosphatemia and outcomes in critically ill patients: a systematic review and meta-analysis [J]. Front Med (Lausanne), 2022, 9: 870637. DOI: 10.3389/fmed.2022.870637. Badawi O, Waite MD, Fuhrman SA, et al. Association between intensive care unit-acquired dysglycemia and in-hospital mortality [J]. Crit Care Med, 2012, 40 (12): 3180-3188. DOI: 10.1097/CCM.0b013e3182656ae5. McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia [J]. Crit Care Clin, 2001, 17 (1): 107-124. DOI: 10.1016/s0749-0704(05)70154-8. Dossett LA, Cao HQ, Mowery NT, et al. Blood glucose variability is associated with mortality in the surgical intensive care unit [J]. Am Surg, 2008, 74 (8): 679-685; discussion 685. DOI: 10.1177/000313480807400802. Hermanides J, Vriesendorp TM, Bosman RJ, et al. Glucose variability is associated with intensive care unit mortality [J]. Crit Care Med, 2010, 38 (3): 838-842. DOI: 10.1097/CCM.0b013e3181cc4be9. Egi M, Krinsley JS, Maurer P, et al. Pre-morbid glycemic control modifies the interaction between acute hypoglycemia and mortality [J]. Intensive Care Med, 2016, 42 (4): 562-571. DOI: 10.1007/s00134-016-4216-8. Ichai C, Preiser JC, Société Française d'Anesthésie-Réanimation, et al. International recommendations for glucose control in adult non diabetic critically ill patients [J]. Crit Care, 2010, 14 (5): R166. DOI: 10.1186/cc9258. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in critically ill patients [J]. N Engl J Med, 2001, 345 (19): 1359-1367. DOI: 10.1056/NEJMoa011300. Preiser JC, Devos P, Ruiz-Santana S, et al. A prospective randomised multi-centre controlled trial on tight glucose control by intensive insulin therapy in adult intensive care units: the Glucontrol study [J]. Intensive Care Med, 2009, 35 (10): 1738-1748. DOI: 10.1007/s00134-009-1585-2. Brunkhorst FM, Engel C, Bloos F, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis [J]. N Engl J Med, 2008, 358 (2): 125-139. DOI: 10.1056/NEJMoa070716. Preiser JC, van Zanten AR, Berger MM, et al. Metabolic and nutritional support of critically ill patients: consensus and controversies [J]. Crit Care, 2015, 19 (1): 35. DOI: 10.1186/s13054-015-0737-8. Schultz MJ, Harmsen RE, Spronk PE. Clinical review: strict or loose glycemic control in critically ill patients. Implementing best available evidence from randomized controlled trials [J]. Crit Care, 2010, 14 (3): 223. DOI: 10.1186/cc8966. Yao RQ, Ren C, Wu GS, et al. Is intensive glucose control bad for critically ill patients? A systematic review and meta-analysis [J]. Int J Biol Sci, 2020, 16 (9): 1658-1675. DOI: 10.7150/ijbs.43447. Sun MT, Li IC, Lin WS, et al. Pros and cons of continuous glucose monitoring in the intensive care unit [J]. World J Clin Cases, 2021, 9 (29): 8666-8670. DOI: 10.12998/wjcc.v9.i29.8666. Boom DT, Sechterberger MK, Rijkenberg S, et al. Insulin treatment guided by subcutaneous continuous glucose monitoring compared to frequent point-of-care measurement in critically ill patients: a randomized controlled trial [J]. Crit Care, 2014, 18 (4): 453. DOI: 10.1186/s13054-014-0453-9. Krinsley JS, Bruns DE, Boyd JC. The impact of measurement frequency on the domains of glycemic control in the critically ill: a Monte Carlo simulation [J]. J Diabetes Sci Technol, 2015, 9 (2): 237-245. DOI: 10.1177/1932296814566507. Chen C, Zhao XL, Li ZH, et al. Current and emerging technology for continuous glucose monitoring [J]. Sensors (Basel), 2017, 17 (1): 182. DOI: 10.3390/s17010182. Holzinger U, Warszawska J, Kitzberger R, et al. Impact of shock requiring norepinephrine on the accuracy and reliability of subcutaneous continuous glucose monitoring [J]. Intensive Care Med, 2009, 35 (8): 1383-1389. DOI: 10.1007/s00134-009-1471-y. Kosiborod M, Gottlieb RK, Sekella JA, et al. Performance of the Medtronic Sentrino continuous glucose management (CGM) system in the cardiac intensive care unit [J]. BMJ Open Diabetes Res Care, 2014, 2 (1): e000037. DOI: 10.1136/bmjdrc-2014-000037. Yao Y, Zhao YH, Zheng WH, et al. Subcutaneous continuous glucose monitoring in critically ill patients during insulin therapy: a meta-analysis [J]. Am J Transl Res, 2022, 14 (7): 4757-4767. Reignier J, Boisramé-Helms J, Brisard L, et al. Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2) [J]. Lancet, 2018, 391 (10116): 133-143. DOI: 10.1016/S0140-6736(17)32146-3. Wang LP, Yang H, Cheng YS, et al. Mean arterial pressure/norepinephrine equivalent dose index as an early measure of initiation time for enteral nutrition in patients with shock: a prospective observational study [J]. Nutrition, 2022, 96: 111586. DOI: 10.1016/j.nut.2021.111586. Mao Z, Liu GX, Yu Q, et al. Association between serum lactate levels and enteral feeding intolerance in septic patients treated with vasopressors: a retrospective cohort study [J]. Ann Transl Med, 2020, 8 (19): 1240. DOI: 10.21037/atm-20-6317. Mancl EE, Muzevich KM. Tolerability and safety of enteral nutrition in critically ill patients receiving intravenous vasopressor therapy [J]. JPEN J Parenter Enteral Nutr, 2013, 37 (5): 641-651. DOI: 10.1177/0148607112470460. Ohbe H, Jo T, Matsui H, et al. Differences in effect of early enteral nutrition on mortality among ventilated adults with shock requiring low-, medium-, and high-dose noradrenaline: a propensity-matched analysis [J]. Clin Nutr, 2020, 39 (2): 460-467. DOI: 10.1016/j.clnu.2019.02.020. Franzosi OS, Nunes DSL, Klanovicz TM, et al. Hemodynamic and skin perfusion is associated with successful enteral nutrition therapy in septic shock patients [J]. Clin Nutr, 2020, 39 (12): 3721-3729. DOI: 10.1016/j.clnu.2020.03.033. Grau T, Bonet A, Rubio M, et al. Liver dysfunction associated with artificial nutrition in critically ill patients [J]. Crit Care, 2007, 11 (1): R10. DOI: 10.1186/cc5670. Vanwijngaerden YM, Langouche L, Brunner R, et al. Withholding parenteral nutrition during critical illness increases plasma bilirubin but lowers the incidence of biliary sludge [J]. Hepatology, 2014, 60 (1): 202-210. DOI: 10.1002/hep.26928. 王新颖牛程麟章黎.肠内营养对肝功能障碍患者腹部手术后肝功能及炎性反应的改善[J].中华胃肠外科杂志, 2011, 14 (5): 336-339. DOI: 10.3760/cma.j.issn.1671-0274.2011.05.010. Fiaccadori E, Maggiore U, Rotelli C, et al. Effects of different energy intakes on nitrogen balance in patients with acute renal failure: a pilot study [J]. Nephrol Dial Transplant, 2005, 20 (9): 1976-1980. DOI: 10.1093/ndt/gfh956. Gultekin G, Sahin H, Inanc N, et al. Impact of Omega-3 and Omega-9 fatty acids enriched total parenteral nutrition on blood chemistry and inflammatory markers in septic patients [J]. Pak J Med Sci, 2014, 30 (2): 299-304. DOI: 10.12669/pjms.302.3957. Han YY, Lai SL, Ko WJ, et al. Effects of fish oil on inflammatory modulation in surgical intensive care unit patients [J]. Nutr Clin Pract, 2012, 27 (1): 91-98. DOI: 10.1177/0884533611429796. Wang Q, Wang G, Qiu ZY, et al. Elevated serum triglycerides in the prognostic assessment of acute pancreatitis: a systematic review and meta-analysis of observational studies [J]. J Clin Gastroenterol, 2017, 51 (7): 586-593. DOI: 10.1097/MCG.0000000000000846. García-de-Lorenzo A, Denia R, Atlan P, et al. Parenteral nutrition providing a restricted amount of linoleic acid in severely burned patients: a randomised double-blind study of an olive oil-based lipid emulsion v. medium/long-chain triacylglycerols [J]. Br J Nutr, 2005, 94 (2): 221-230. DOI: 10.1079/bjn20051467. Moranne O, Froissart M, Rossert J, et al. Timing of onset of CKD-related metabolic complications [J]. J Am Soc Nephrol, 2009, 20 (1): 164-171. DOI: 10.1681/ASN.2008020159. RENAL Replacement Therapy Study Investigators. Intensity of continuous renal-replacement therapy in critically ill patients [J]. N Engl J Med, 2009, 361 (17): 1627-1638. DOI: 10.1056/NEJMoa0902413. Finkel KW, Podoll AS. Complications of continuous renal replacement therapy [J]. Semin Dial, 2009, 22 (2): 155-159. DOI: 10.1111/j.1525-139X.2008.00550.x. Nelson EE, Hong CD, Pesce AL, et al. Anthropometric norms for the dialysis population [J]. Am J Kidney Dis, 1990, 16 (1): 32-37. DOI: 10.1016/s0272-6386(12)80782-7. VA/NIH Acute Renal Failure Trial Network. Intensity of renal support in critically ill patients with acute kidney injury [J]. N Engl J Med, 2008, 359 (1): 7-20. DOI: 10.1056/NEJMoa0802639. Blake GJ, Ridker PM. High sensitivity C-reactive protein for predicting cardiovascular disease: an inflammatory hypothesis [J]. Eur Heart J, 2001, 22 (5): 349-352. DOI: 10.1053/euhj.2000.2280. Heimbürger O, Qureshi AR, Blaner WS, et al. Hand-grip muscle strength, lean body mass, and plasma proteins as markers of nutritional status in patients with chronic renal failure close to start of dialysis therapy [J]. Am J Kidney Dis, 2000, 36 (6): 1213-1225. DOI: 10.1053/ajkd.2000.19837. Adeney KL, Siscovick DS, Ix JH, et al. Association of serum phosphate with vascular and valvular calcification in moderate CKD [J]. J Am Soc Nephrol, 2009, 20 (2): 381-387. DOI: 10.1681/ASN.2008040349. Yang Y, Zhang P, Cui Y, et al. Hypophosphatemia during continuous veno-venous hemofiltration is associated with mortality in critically ill patients with acute kidney injury [J]. Crit Care, 2013, 17 (5): R205. DOI: 10.1186/cc12900. D'Alessandro C, Piccoli GB, Cupisti A. The "phosphorus pyramid": a visual tool for dietary phosphate management in dialysis and CKD patients [J]. BMC Nephrol, 2015, 16: 9. DOI: 10.1186/1471-2369-16-9. Reaich D, Channon SM, Scrimgeour CM, et al. Correction of acidosis in humans with CRF decreases protein degradation and amino acid oxidation [J]. Am J Physiol, 1993, 265 (2 Pt 1): E230-E235. DOI: 10.1152/ajpendo.1993.265.2.E230. Scialla JJ, Appel LJ, Astor BC, et al. Net endogenous acid production is associated with a faster decline in GFR in African Americans [J]. Kidney Int, 2012, 82 (1): 106-112. DOI: 10.1038/ki.2012.82. Wesson DE, Simoni J. Acid retention during kidney failure induces endothelin and aldosterone production which lead to progressive GFR decline, a situation ameliorated by alkali diet [J]. Kidney Int, 2010, 78 (11): 1128-1135. DOI: 10.1038/ki.2010.348. Banerjee T, Crews DC, Wesson DE, et al. High dietary acid load predicts ESRD among adults with CKD [J]. J Am Soc Nephrol, 2015, 26 (7): 1693-1700. DOI: 10.1681/ASN.2014040332. Piton G, Capellier G. Biomarkers of gut barrier failure in the ICU [J]. Curr Opin Crit Care, 2016, 22 (2): 152-160. DOI: 10.1097/MCC.0000000000000283. Doig CJ, Sutherland LR, Sandham JD, et al. Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients [J]. Am J Respir Crit Care Med, 1998, 158 (2): 444-451. DOI: 10.1164/ajrccm.158.2.9710092. Reintam Blaser A, Padar M, Mändul M, et al. Development of the gastrointestinal dysfunction score (GIDS) for critically ill patients: a prospective multicenter observational study (iSOFA study) [J]. Clin Nutr, 2021, 40 (8): 4932-4940. DOI: 10.1016/j.clnu.2021.07.015. Crenn P, Neveux N, Chevret S, et al. Plasma L-citrulline concentrations and its relationship with inflammation at the onset of septic shock: a pilot study [J]. J Crit Care, 2014, 29 (2): 315.e1-e6. DOI: 10.1016/j.jcrc.2013.11.015. Grimaldi D, Guivarch E, Neveux N, et al. Markers of intestinal injury are associated with endotoxemia in successfully resuscitated patients [J]. Resuscitation, 2013, 84 (1): 60-65. DOI: 10.1016/j.resuscitation.2012.06.010. Velasco N. Gut barrier in the critically ill patient: facts and trends [J]. Rev Med Chil, 2006, 134 (8): 1033-1039. DOI: 10.4067/s0034-98872006000800014. Turner JR. Intestinal mucosal barrier function in health and disease [J]. Nat Rev Immunol, 2009, 9 (11): 799-809. DOI: 10.1038/nri2653. Li HX, Chen Y, Huo FF, et al. Association between acute gastrointestinal injury and biomarkers of intestinal barrier function in critically ill patients [J]. BMC Gastroenterol, 2017, 17 (1): 45. DOI: 10.1186/s12876-017-0603-z. Voth M, Holzberger S, Auner B, et al. I-FABP and L-FABP are early markers for abdominal injury with limited prognostic value for secondary organ failures in the post-traumatic course [J]. Clin Chem Lab Med, 2015, 53 (5): 771-780. DOI: 10.1515/cclm-2014-0354. Neal MD, Leaphart C, Levy R, et al. Enterocyte TLR4 mediates phagocytosis and translocation of bacteria across the intestinal barrier [J]. J Immunol, 2006, 176 (5): 3070-3079. DOI: 10.4049/jimmunol.176.5.3070. Padar M, Starkopf J, Starkopf L, et al. Enteral nutrition and dynamics of citrulline and intestinal fatty acid-binding protein in adult ICU patients [J]. Clin Nutr ESPEN, 2021, 45: 322-332. DOI: 10.1016/j.clnesp.2021.07.026. Piton G, Le Gouge A, Brulé N, et al. Impact of the route of nutrition on gut mucosa in ventilated adults with shock: an ancillary of the NUTRIREA-2 trial [J]. Intensive Care Med, 2019, 45 (7): 948-956. DOI: 10.1007/s00134-019-05649-3. Teng J, Xiang L, Long HC, et al. The serum citrulline and D-lactate are associated with gastrointestinal dysfunction and failure in critically ill patients [J]. Int J Gen Med, 2021, 14: 4125-4134. DOI: 10.2147/IJGM.S305209. Dickerson RN, Tidwell AC, Minard G, et al. Predicting total urinary nitrogen excretion from urinary urea nitrogen excretion in multiple-trauma patients receiving specialized nutritional support [J]. Nutrition, 2005, 21 (3): 332-338. DOI: 10.1016/j.nut.2004.07.005. Inaguma D, Koide S, Ito E, et al. Ratio of blood urea nitrogen to serum creatinine at initiation of dialysis is associated with mortality: a multicenter prospective cohort study [J]. Clin Exp Nephrol, 2018, 22 (2): 353-364. DOI: 10.1007/s10157-017-1458-x. Berbel MN, de Góes CR, Balbi AL, et al. Nutritional parameters are associated with mortality in acute kidney injury [J]. Clinics (Sao Paulo), 2014, 69 (7): 476-482. DOI: 10.6061/clinics/2014(07)06. Canaud B, Leblanc M, Leray-Moragues H, et al. Acute renal failure: nutritional disorders and therapeutic implications [C]//Conference on Acute Renal Insufficiency, 1998. Ponce D, Berbel MN, Regina de Goes C, et al. High-volume peritoneal dialysis in acute kidney injury: indications and limitations [J]. Clin J Am Soc Nephrol, 2012, 7 (6): 887-894. DOI: 10.2215/CJN.11131111. Scheinkestel CD, Kar L, Marshall K, et al. Prospective randomized trial to assess caloric and protein needs of critically ill, anuric, ventilated patients requiring continuous renal replacement therapy [J]. Nutrition, 2003, 19 (11-12): 909-916. DOI: 10.1016/s0899-9007(03)00175-8. Kim TJ, Park SH, Jeong HB, et al. Optimizing nitrogen balance is associated with better outcomes in neurocritically ill patients [J]. Nutrients, 2020, 12 (10): 3137. DOI: 10.3390/nu12103137. Wu GH, Ehm A, Bellone M, et al. Pharmacoeconomics of parenteral nutrition in surgical and critically ill patients receiving structured triglycerides in China [J]. Asia Pac J Clin Nutr, 2017, 26 (6): 1021-1031. DOI: 10.6133/apjcn.022017.04. Lee ZY, Yap CSL, Hasan MS, et al. The effect of higher versus lower protein delivery in critically ill patients: a systematic review and meta-analysis of randomized controlled trials [J]. Crit Care, 2021, 25 (1): 260. DOI: 10.1186/s13054-021-03693-4. Dickerson RN, Maish GO 3rd, Croce MA, et al. Influence of aging on nitrogen accretion during critical illness [J]. JPEN J Parenter Enteral Nutr, 2015, 39 (3): 282-290. DOI: 10.1177/0148607113506939. Casaer MP, Wilmer A, Hermans G, et al. Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: a post hoc analysis [J]. Am J Respir Crit Care Med, 2013, 187 (3): 247-255. DOI: 10.1164/rccm.201206-0999OC. Weijs PJ, Looijaard WGPM, Beishuizen A, et al. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients [J]. Crit Care, 2014, 18 (6): 701. DOI: 10.1186/s13054-014-0701-z. Zappitelli M, Juarez M, Castillo L, et al. Continuous renal replacement therapy amino acid, trace metal and folate clearance in critically ill children [J]. Intensive Care Med, 2009, 35 (4): 698-706. DOI: 10.1007/s00134-009-1420-9. Cheatham ML, Safcsak K, Brzezinski SJ, et al. Nitrogen balance, protein loss, and the open abdomen [J]. Crit Care Med, 2007, 35 (1): 127-131. DOI: 10.1097/01.CCM.0000250390.49380.94. Konstantinides FN. Nitrogen balance studies in clinical nutrition [J]. Nutr Clin Pract, 1992, 7 (5): 231-238. DOI: 10.1177/0115426592007005231. Japur CC, Monteiro JP, Marchini JS, et al. Can an adequate energy intake be able to reverse the negative nitrogen balance in mechanically ventilated critically ill patients? [J]. J Crit Care, 2010, 25 (3): 445-450. DOI: 10.1016/j.jcrc.2009.05.009. Buckley CT, Prasanna N, Mays AL, et al. Protein requirements for critically ill ventilator-dependent patients with COVID-19 [J]. Nutr Clin Pract, 2021, 36 (5): 984-992. DOI: 10.1002/ncp.10763. Dreydemy G, Coussy A, Lannou A, et al. Augmented renal clearance, muscle catabolism and urinary nitrogen loss: implications for nutritional support in critically ill trauma patients [J]. Nutrients, 2021, 13 (10): 3554. DOI: 10.3390/nu13103554. Dickerson RN, Tidwell AC, Minard G, et al. Predicting total urinary nitrogen excretion from urinary urea nitrogen excretion in multiple-trauma patients receiving specialized nutritional support [J]. Nutrition, 2005, 21 (3): 332-338. DOI: 10.1016/j.nut.2004.07.005. Danielis M, Lorenzoni G, Azzolina D, et al. Effect of protein-fortified diet on nitrogen balance in critically ill patients: results from the OPINiB trial [J]. Nutrients, 2019, 11 (5): 972. DOI: 10.3390/nu11050972. Dupuis C, Bret A, Janer A, et al. Association of nitrogen balance trajectories with clinical outcomes in critically ill COVID-19 patients: a retrospective cohort study [J]. Clin Nutr, 2022, 41 (12): 2895-2902. DOI: 10.1016/j.clnu.2022.08.023. Doig GS, Simpson F, Bellomo R, et al. Intravenous amino acid therapy for kidney function in critically ill patients: a randomized controlled trial [J]. Intensive Care Med, 2015, 41 (7): 1197-1208. DOI: 10.1007/s00134-015-3827-9. Konstantinides FN, Konstantinides NN, Li JC, et al. Urinary urea nitrogen: too insensitive for calculating nitrogen balance studies in surgical clinical nutrition [J]. JPEN J Parenter Enteral Nutr, 1991, 15 (2): 189-193. DOI: 10.1177/0148607191015002189. Graves C, Saffle J, Morris S. Comparison of urine urea nitrogen collection times in critically ill patients [J]. Nutr Clin Pract, 2005, 20 (2): 271-275. DOI: 10.1177/0115426505020002271. 陈耀龙杨克虎王小钦.中国制订/修订临床诊疗指南的指导原则(2022版)[J].中华医学杂志, 2022, 102 (10): 697-703. DOI: 10.3760/cma.j.cn112137-20211228-02911. Chen YL, Yang K, Marušic A, et al. A reporting tool for practice guidelines in health care: the RIGHT statement [J]. Ann Intern Med, 2017, 166 (2): 128-132. DOI: 10.7326/M16-1565. Shea BJ, Grimshaw JM, Wells GA, et al. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews [J]. BMC Med Res Methodol, 2007, 7: 10. DOI: 10.1186/1471-2288-7-10. Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials [J]. BMJ, 2011, 343: d5928. DOI: 10.1136/bmj.d5928. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies [J]. Ann Intern Med, 2011, 155 (8): 529-536. DOI: 10.7326/0003-4819-155-8-201110180-00009. Wells G. The Newcastle-Ottawa Scale (NOS) for assessing the quality of non-randomised studies in meta-analyses [C]//Symposium on Systematic Reviews: Beyond the Basics, 2014. Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations [J]. BMJ, 2008, 336 (7650): 924-926. DOI: 10.1136/bmj.39489.470347.AD. Vernooij RWM, Alonso-Coello P, Brouwers M, et al. Reporting items for updated clinical guidelines: checklist for the reporting of updated guidelines (CheckUp) [J]. PLoS Med, 2017, 14 (1): e1002207. DOI: 10.1371/journal.pmed.1002207.