School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical CollegeSchool of Public Health, Peking UniversityDepartment of Management on Infectious Diseases, Chinese Center for Disease Control and PreventionWest China School of Public Health, Sichuan UniversityInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijing Ditan Hospital, Capital Medical UniversitySociety of Public Health, Chinese Medical Association
杨维中,中国医学科学院北京协和医学院群医学及公共卫生学院 公共卫生应急管理创新中心,北京100730,Email:yangweizhong@cams.cn刘珏,北京大学公共卫生学院,北京 100191,Email:jueliu@bjmu.edu.cn李中杰,中国医学科学院北京协和医学院群医学及公共卫生学院 公共卫生应急管理创新中心,北京 100730,Email:lizhongjie@sph.pumc.edu.cn Yang Weizhong, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College Public Health Emergency Management Innovation Center, Beijing 100730, China, Email: yangweizhong@cams.cnLiu Jue, School of Public Health, Peking University, Beijing 100191, China, Email: jueliu@bjmu.edu.cnLi Zhongjie, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College Public Health Emergency Management Innovation Center, Beijing 100730, China, Email: lizhongjie@sph.pumc.edu.cn
国际实践指南注册与透明化平台(PREPARE-2024CN860)
Practice Guideline Registration for Transparency Platform (PREPARE-2024CN860)
本共识由中国医学科学院北京协和医学院群医学及公共卫生学院发起,联合北京大学公共卫生学院、中国疾病预防控制中心、四川大学华西公共卫生学院、中国科学院地理科学与资源研究所、首都医科大学附属北京地坛医院、中华医学会公共卫生分会等多单位机构共同制订。共识已在国际实践指南注册平台(practice guideline registration for transparency,PREPARE,http://www.guidelines-registry.org)通过注册。共识起草过程遵循国际通用的共识制订流程。
3. 文献检索及共识形成过程:由共识制订秘书组检索纳入来自国内外的相关原始研究、系统评价、文献分析、指南、共识等证据,检索PubMed、Web of Science、知网等中英文数据库,以及国内外机构发布的传染病监测预警相关文件,检索时间为建库至2024年5月31日,检索不限定发表语言。共识制订专家组基于检索结果,从传染病多点触发智慧化监测预警系统的相关概念和定义,关键技术框架,多渠道预警数据来源、获取与治理,预警方法分类,多点触发智慧化监测预警关键流程及路径,多点触发预警及综合研判,预警信号响应以及预警效果评价等方面,撰写共识初稿。共识制订专家组召开8轮会议,对共识初稿文件进行了深入讨论、审阅与修改,以完善共识内容。再经由共识审阅专家组进行审阅与修订,提出具体修订意见,并由共识制订专家组再次商议讨论,最后形成传染病多点触发智慧化监测预警系统关键技术专家共识终稿。
2. 多点触发智慧化监测预警(multi-point trigger intelligent surveillance and early warning):是指基于多渠道监测的智能化传染病预警技术,利用多渠道监测采集的传染病发生风险或异常“苗头”的相关数据,采用大数据、物联网、人工智能等数据处理与建模技术,综合研判分析结果,在传染病可能发生、发生早期、发展变化的多个关键节点,自动化、智能化发出预警信号。多点触发智慧化监测预警可以提高预警的灵敏度、准确性和及时性,减少人为干扰和工作失察[3, 4]。
参考文献杨维中, 兰亚佳, 吕炜, 等. 建立我国传染病智慧化预警多点触发机制和多渠道监测预警机制[J]. , 2020, 41(11):1753-1757. DOI: 10.3760/cma.j.cn112338-20200722-00972.马宇航, 殷一, 江欣, 等. 新发呼吸道传染病多渠道监测和多维度预警体系研究与思考[J]. , 2023, 44(4):529-535. DOI: 10.3760/cma.j.cn112338-20221201-01029.王金龙, 陈涛, 任翔, 等. 重要呼吸道传染病智慧化监测预警与有效应对策略探讨[J]. , 2021, 37(5):1175-1178. DOI: 10.13242/j.cnki.bingduxuebao.004024.中国政府网. 全面推进智慧化多点触发传染病监测预警体系建设[EB/OL].[2024-05-30]. https://www.gov.cn/xinwen/jdzc/202312/content_6922957.htm.陈翠霞, 王小龙, 蒋太交, 等. 基于多源异构大数据挖掘的流感病毒防控预测预警平台构建研究[J]. , 2020, 40(1):109-115. DOI: 10.13523/j.cb.1906028.闫佳和, 李红辉, 马英, 等. 多源异构数据融合关键技术与政务大数据治理体系[J]. , 2024, 51(2):1-14. DOI: 10.11896/jsjkx.221200075.SachsJD, KarimS, AkninL, et al. The Lancet Commission on lessons for the future from the COVID-19 pandemic[J]. , 2022, 400(10359):1224-1280. DOI: 10.1016/S0140-6736(22)01585-9.World Health Organization (WHO). Disease early warning, alert and response in emergencies for outbreaks. [EB/OL].[2024-05-30]. https://www.who.int/news-room/feature-stories/detail/disease-early-warning-alert-and-response-in-emergencies.LaiS, RuktanonchaiNW, ZhouL, et al. Effect of non-pharmaceutical interventions to contain COVID-19 in China[J]. , 2020, 585(7825):410-413. DOI: 10.1038/s41586-020-2293-x.杨维中. [M]. 北京:人民卫生出版社, 2012.赖圣杰, 冯录召, 冷志伟, 等. 传染病暴发早期预警模型和预警系统概述与展望[J]. , 2021, 42(8):1330-1335. DOI: 10.3760/cma.j.cn112338-20210512-00391.王树坤, 赵世文, 伏晓庆, 等. 传染病暴发或流行的探测、监测和预警[J]. , 2021, 42(5):941-947. DOI: 10.3760/cma.j.cn112338-20201020-01251.成君, 刘剑君. 我国学校结核病疫情监测和预警的现状与进展[J]. , 2020, 42(5):436-441. DOI: 10.3969/j.issn.1000-6621.2020.05.005.BrownAC, LauerSA, RobinsonCC, et al. Evaluating the ALERT algorithm for local outbreak onset detection in seasonal infectious disease surveillance data[J]. , 2020, 39(8):1145-1155. DOI: 10.1002/sim.8467.QinG, ZhangL, YuCJ. Nonpharmaceutical interventions and epidemic intensity during the 2019 Novel Coronavirus Disease Pandemic[J]. , 2020, 71(8):2019-2020. DOI: 10.1093/cid/ciaa432.崔运武, 袁晓瑭. 论应对重大疫情决策支持系统的完善——基于国家治理现代化和整体性治理的分析[J]. , 2022, (1):73-79. DOI: 10.3969/j.issn.1006-723X.2022.01.010.M′ikanathaNM, LynfieldR, van BenedenCA, et al. [M]. New Jersey: Wiley-Blackwell, 2013.SalathéM. Digital epidemiology: what is it, and where is it going?[J]. , 2018, 14(1):1. DOI: 10.1186/s40504-017-0065-7.MorganOW, AbdelmalikP, Perez-GutierrezE, et al. How better pandemic and epidemic intelligence will prepare the world for future threats[J]. , 2022, 28(8):1526-1528. DOI: 10.1038/s41591-022-01900-5.LiuJ, LiuM, LiangWN. The 'Triangle Model' theory for prevention and control of newly emerging infectious diseases: definition, characteristics, and experience in China[J]. . 2023, 5:137-140. DOI: 10.1016/j.glt.2023.08.004.RussellS, NorvigP. [M]. London: Pearson Education Limited, 2016.ShmueliG, KoppiusOR. Predictive analytics in information systems research[J]. , 2011, 35(3): 553-572.Hayes-RothF. Rule-based systems[J]. , 1985, 28(9): 921-932.姜芳晶, 杨维中. 医学常用综合评价方法[J]. , 2006, 21(6):325-328. DOI: 10.3784/j.issn.1003-9961.2006.06.017.杨维中, 兰亚佳, 李中杰, 等. 国家传染病自动预警系统的设计与应用[J]. , 2010, 31(11):1240-1244. DOI: 10.3760/cma.j.issn.0254-6450.2010.11.009.BishopCM, NasrabadiNM. [M]. Berlin: Springer, 2006.National Research Council (US) Committee on Climate, Ecosystems, Infectious Diseases, and Human Health. . [M]. Washington (DC): National Academies Press (US), 2001.HeffernanR, MostashariF, DasD, et al. Syndromic surveillance in public health practice, New York City[J]. , 2004, 10(5):858-864. DOI: 10.3201/eid1005.030646.GaoY, CaiGY, FangW, et al. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19[J]. , 2020, 11(1):5033. DOI: 10.1038/s41467-020-18684-2.O′ReganSM, DrakeJM. Theory of early warning signals of disease emergenceand leading indicators of elimination[J]. , 2013, 6(3):333-357. DOI: 10.1007/s12080-013-0185-5.BishopCM. [M]. Berlin: Springer, 2006.World Health Organization. [M]. Geneva: World Health Organization, 2021.OlivalKJ, HosseiniPR, Zambrana-TorrelioC, et al. Host and viral traits predict zoonotic spillover from mammals[J]. , 2017, 546(7660):646-650. DOI: 10.1038/nature22975.LiuXD, HouBH, XieZJ, et al. Integrating gated recurrent unit in graph neural network to improve infectious disease prediction: an attempt[J]. , 2024, 12:1397260. DOI: 10.3389/fpubh.2024.1397260.DebS, SidheekhS, ClementsCF, et al. Machine learning methods trained on simple models can predict critical transitions in complex natural systems[J]. , 2022, 9(2):211475. DOI: 10.1098/rsos.211475.PichlerM, BoreuxV, KleinAlexandra-Maria, et al. Machine learning algorithms to infer trait-matching and predict species interactions in ecological networks[J]. , 2020, 11(2).DOI: 10.1111/2041-210X.13329.MadamombeK, KarakadzaiM, MasojaG, et al. Evaluation of the weekly disease surveillance system for epidemic-prone diseases in Makonde District, Zimbabwe 2020: a descriptive cross-sectional study[J]. , 2022, 43:132. DOI: 10.11604/pamj.2022.43.132.35001.ManurungMK, ReoSE, PardosiJF, et al. Evaluation of the indonesian early warning alert and response system (EWARS) in West Papua, Indonesia[J]. , 2020, 9(2):111-117. DOI: 10.4103/2224-3151.294304.张美玲. 我国突发公共卫生事件预警机制研究——以新冠肺炎疫情为例[D]. 重庆:西南政法大学, 2021.黄锐, 陈维政, 胡冬梅, 等. 基于区块链技术的我国传染病监测预警系统的优化研究[J]. , 2020, 17(12):1848-1856. DOI: 10.3969/j.issn.1672-884x.2020.12.013.周志峰, 廖玉学, 李学云, 等. 前瞻性时空重排扫描统计量法在深圳市流行性腮腺炎聚集性疫情早期预警中的应用[J]., 2020, 27(1), 16-20.DOI: 10.3969/j.issn.1006-3110.2020.01.005.范允舟. 综合症状监测系统预警性能的评价及应用研究[D]. 湖北:华中科技大学, 2015. DOI: 10.7666/d.D731727.赖圣杰, 廖一兰, 张洪龙, 等. 2011—2013年国家传染病自动预警系统中时间模型和时空模型应用效果比较[J]. , 2014, 48(4):259-264. DOI: 10.3760/cma.j.issn.0253-9624.2014.04.005.来晓强, 殷小娟, 张彦青, 等. 定西市传染病自动预警系统运行效果分析[J]. , 2016, 31(4):22-24. DOI: 10.13215/j.cnki.jbyfkztb.1604008.孔园园. 2012—2016年上海松江传染病自动预警信息效果[J]. , 2018, 29(3):110-113. DOI: 10.3969/j.issn.1006-2483.2018.03.029.余向华, 潘琼娇, 魏晶娇, 等. 浙江省温州市传染病自动预警系统运行情况分析[J]., 2013, 28(6):496-498.AbdullaAA, RasheedaF, AhmedIN, et al. An evaluation of the surveillance system for dengue virus infections in Maldives[J]. , 2014, 3(1):60-68. DOI: 10.4103/2224-3151.206886.FanY, WangY, JiangH, et al. Evaluation of outbreak detection performance using multi-stream syndromic surveillance for influenza-like illness in rural Hubei Province, China: a temporal simulation model based on healthcare-seeking behaviors[J]. , 2014, 9(11):e112255. DOI: 10.1371/journal.pone.0112255.叶楚楚, 朱渭萍, 王远萍, 等. 国家传染病自动预警系统探测范围对手足口病聚集性事件预警效果的影响[J]. , 2017, 32(9):725-730. DOI: 10.3784/j.issn.1003-9961.2017.09.006.鲁琴宝, 徐旭卿, 林君芬, 等. 2009—2012年浙江省传染病自动预警系统预警结果分析[J]. , 2014, 15(7):654-658.LeeCT, BulterysM, MartelLD, et al. Evaluation of a national call center and a local alerts system for detection of new cases of ebola virus disease-Guinea, 2014-2015[J]. , 2016, 65(9):227-230. DOI: 10.15585/mmwr.mm6509a2.彭悦景, 李迎慧, 杜琛, 等. 深圳市基于污水流行病学的新型冠状病毒奥密克戎变异株感染者来源追踪案例分析[J]. , 2024, 104(4):302-307. DOI: 10.3760/cma.j.cn112137-20231016-00766.CraigAT, JoshuaCA, SioAR, et al. Epidemic surveillance in a low resource setting: lessons from an evaluation of the Solomon Islands syndromic surveillance system, 2017[J]. , 2018, 18(1):1395. DOI: 10.1186/s12889-018-6295-7.李媛, 吕秋莹, 马汉武, 等. 深圳市2008—2011年传染病自动预警信息分析[J]., 2013, 29(6) 858-861.陈碧云, 高立冬, 李忠杰, 等. 湖南省传染病自动预警系统预警效果分析[J]. , 2012, 19(12):1767-1771. DOI: 10.3969/j.issn.1006-3110.2012.12.002.YangL, ZhangT, HanX, et al. Influenza epidemic trend surveillance and prediction based on search engine data: deep learning model study[J]. , 2023, 25:e45085. DOI: 10.2196/45085.孙乔, 傅益飞, 朱渭萍, 等. 症状监测与预警系统建立及应用[J]. , 2012, 28(6): 430-433.CraigAT, KamaM, SamoM, et al. Early warning epidemic surveillance in the Pacific island nations: an evaluation of the Pacific syndromic surveillance system[J]. , 2016, 21(7):917-927. DOI: 10.1111/tmi.12711.KeitaM, LucaccioniH, IlumbulumbuMK, et al. Evaluation of early warning, alert and response system for ebola virus disease, Democratic Republic of the Congo, 2018-2020[J]. , 2021, 27(12):2988-2998. DOI: 10.3201/eid2712.210290.RumunuJ, WamalaJF, SakayaR, et al. Evaluation of integrated disease surveillance and response (IDSR) and early warning and response network (EWARN) in South Sudan 2021[J]. , 2022, 42(Suppl 1):6. DOI: 10.11604/pamj.supp.2022.42.1.33780.