中国成人ICU镇痛和镇静治疗指南
中华危重病急救医学, 2018,30(6) : 497-514. DOI: 10.3760/cma.j.issn.2095-4352.2018.06.001
1 前 言

重症医学科(ICU)收治的患者处于强烈的应激环境之中,其常见原因包括:①自身严重疾病的影响:患者因病情严重难以自理,各种有创诊治操作,自身伤病的疼痛;②环境因素:患者被约束于病床上,灯光长明,昼夜不分,各种噪音(机器声、报警声、呼喊声等),睡眠剥夺,邻床患者的抢救或去世等;③隐匿性疼痛:气管插管及其他各种插管,长时间卧床;④对未来命运的忧虑:对疾病预后的担心,死亡的恐惧,对家人的思念与担心等。上述因素使患者感到极度的"无助"和"恐惧",构成对患者的恶性刺激,增加了患者的痛苦,甚至使患者因为这种"无助与恐惧"而躁动挣扎,危及其生命安全。

重症医学工作者应该时刻牢记,我们在抢救生命、治疗疾病的过程中,必须同时注意尽可能减轻患者的痛苦与恐惧感,使患者不感知、不注意、不记忆或者遗忘其在危重阶段的各种痛苦,避免这些痛苦及其所引发的焦虑和躁动而增加各器官的代谢负担、加重患者的病情或影响其接受治疗。因此,镇痛和镇静应作为ICU患者的常规治疗。

2006年中华医学会重症医学分会撰写了《中国重症加强治疗病房患者镇痛和镇静治疗指导意见(2006)》[1],奠定了中国重症患者镇痛镇静的基础。近十年来国内及国际重症医学界对于疼痛、焦虑及谵妄等问题更加关注,进行了大量的工作,发表了较多文献,关于疼痛、焦虑、谵妄及其防治的理念也有逐渐的变迁,更加强调"早期干预、以镇痛治疗为基础、以患者为中心"的人文关怀,尽可能减少镇痛镇静药物治疗的不良反应[2,3,4]

鉴于上述进展,为更新重症医学工作者对镇痛、镇静及谵妄防治的认识并规范其临床应用,中华医学会重症医学分会在2006年指导意见的基础上,依据国内外最新的研究进展,组织专家进行讨论,归纳和构建了5部分内容、共19个在临床实践中常见的重要问题,应用目前循证医学常用的GRADE方法(推荐分级的评估、制定与评价)[5,6],更新修订了本《中国成人ICU镇痛和镇静治疗指南》。

2 方法学
2.1 临床问题的构建:

临床问题通过"PICO"原则进行构建,即人群(Patient)、干预措施(Intervention)、对照措施(Comparison)和结局(Outcome)[6]。根据专家组的讨论,初步制定了37个临床问题,然后向中华医学会重症医学分会常务委员及青年委员发放问卷调查,选取了大家关注度较高的19个问题。

2.2 文献检索、筛选和数据整合:

在文献检索工作开展前,本指南修订工作组进行了2次文献检索策略培训。检索的外文数据库为Medline、Embase和Cochrane library,年限为1999年1月1日至2017年9月19日;中文数据库为中国知网、万方医学和中国生物医学文献数据库,年限为2006年10月1日至2017年9月19日。检索完成后进行文献筛查,对最终选取的文献进行数据提取和质量评价〔其中随机对照试验(RCT)采用Cochrane偏倚风险评估工具,队列研究和病例对照研究采用纽卡斯尔-渥太华(NOS)量表,诊断实验采用诊断准确性研究的质量评估(QUADAS-2)量表〕,最后通过Meta分析进行数据整合。Meta分析应用RevMan 5.3软件进行数据分析,并将结果以"森林图"形式导出。期间,指南修订工作组又进行了1次文献质量评价培训和2次Meta分析培训。

2.3 GRADE方法:

在证据质量和推荐强度的评价中,我们采用GRADE方法,应用GRADEpro在线指南制定工具(GRADEpro Guideline Development Tool)软件进行证据质量评价和推荐强度评价[7]。在该项目工作进行前,指南修订工作组召集全体成员进行GRADE方法培训;在制定指南过程中,临床专家与方法学专家共同进行证据质量和推荐强度的评价;每个临床问题的推荐意见及其推荐强度最终都须经过指南修订工作组讨论和投票表决。GRADE方法将证据质量分级为"高""中""低""极低"4个级别,每个级别的判断主要根据以下8个因素进行详细评价,即研究类型、偏倚风险、一致性、间接性、精确性、发表偏倚、效应值、混杂因素和剂量-效应梯度。一般初始认为RCT为高质量证据,然后根据偏倚风险、一致性、间接性、精确性和发表偏倚情况进行降级处理;设计和实施较好的观察性研究初始认为是低质量证据,但可根据效应值、混杂因素和剂量-效应梯度情况进行升级处理。证据质量的评价标准见表1

点击查看表格
表1

证据质量评价标准

表1

证据质量评价标准

研究设计 证据质量 具体描述 表达符号 降级因素及降级幅度 升级因素及升级幅度
随机对照试验 高级 我们非常有把握预测值接近真实值 /A ·偏倚风险-1严重;-2非常严重·不一致性-1严重;-2非常严重·间接性-1严重;-2非常严重·不精确性-1严重;-2非常严重·发表偏倚-1可能;-2非常可能 ·效应量大+1大;+2非常大·剂量反应+1梯度证据·所有可能的混杂因素+1降低所展示的效应;+1当研究结果显示无效时意味着是一种假效应
中级 我们对预测值有中等把握:预测值有可能接近真实值,但也有可能差别很大 /B
观察性研究 低级 我们对预测值的把握有限:预测值可能与真实值差别很大 /C
极低级 我们对预测值几乎没有把握:预测值与真实值可能有很大差别 /D

GRADE方法将推荐强度分为"强推荐"和"弱推荐"两类。推荐强度与证据质量、利弊间权衡、患者的意愿和价值观以及资源成本利用4个因素有关,具体见表2。"强推荐"意味着利明显大于弊或弊明显大于利,大多数临床医务人员会选择或拒绝该干预措施,大多数患者亦会从中明显获益;"弱推荐"意味着利可能大于弊或弊可能大于利,指南修定工作者对此推荐意见不是很确信,此时,临床医务人员应根据证据质量评估及患者意愿和价值观进行综合选择。强推荐时,推荐意见表述为"推荐……"。弱推荐时,推荐意见表述为"建议……",具体见表3

点击查看表格
表2

影响推荐意见强度的因素

表2

影响推荐意见强度的因素

影响因素 解释
证据质量 证据质量越高,强推荐可能性越大
利弊间平衡 利弊间的差别越大,越可能做出强推荐;净效益越小及利弊间的确定性越小,越可能做出弱推荐
患者的意愿和价值观 患者意愿与价值观一致和肯定,越可能做出强推荐;意愿和价值观可变性越大,越可能做出弱推荐
资源成本利用 干预的成本越低,资源利用越少,越可能做出强推荐
点击查看表格
表3

推荐强度的解释及表达

表3

推荐强度的解释及表达

推荐强度 具体描述 表达符号 指南表述
明确显示干预措施利大于弊或弊大于利 ↑↑/1支持某意见的强推荐 "推荐……"
↑↑/1反对某意见的强推荐
利弊不确定或无论质量高低的证据均显示利弊相当 ↑?/2支持某意见的弱推荐 "建议……"
↓?/2反对某意见的弱推荐
2.4 最佳实践声明:

对于不能进行GRADE分级的强推荐,采取此种推荐方式,需要满足以下几点要求[8]:①本声明清晰可行;②本声明有临床需求;③本声明的利益或害处明确;④证据很难收集和总结;⑤理论依据明确。

3 指南推荐
3.1 概 述
3.1.1 问题1 :镇痛和镇静是否应作为ICU治疗的重要组成部分?

推荐意见1:推荐镇痛、镇静作为ICU治疗的重要组成部分(最佳实践声明)。

本指南中,镇痛镇静治疗特指应用药物手段减轻/解除患者的疼痛、焦虑及躁动。

理论依据:疼痛是因损伤或炎症刺激,或者因情感痛苦而产生的一种不适的躯体感觉及精神体验[9]。疼痛在ICU中普遍存在,其来源包括原发疾病、手术、创伤、烧伤、癌性疼痛和翻身、吸痰、气管插管、伤口护理、引流管拔除和导管插入等相关治疗操作以及长时间制动、炎症反应等因素[10,11,12]。除ICU住院期间的急性疼痛外,疾病相关的物理性损伤及相关精神因素可能导致患者出现慢性ICU相关疼痛(CIRP)[13]。疼痛导致机体应激、器官作功负荷增加、睡眠不足和代谢改变,进而出现疲劳和定向力障碍,导致心动过速、组织氧耗增加、凝血功能异常、呼吸功能障碍、免疫抑制和分解代谢增加等。镇痛是为了减轻或消除机体对痛觉刺激的应激及病理生理损伤所采取的药物治疗措施,对于ICU患者具有很重要的意义。

焦虑是一种强烈的忧虑、不确定或恐惧状态。50%以上的ICU患者可能出现焦虑症状,其特征包括躯体症状(如心慌、出汗)和紧张感。ICU患者焦虑的原因包括[14,15]:①病房环境:包括噪音,灯光刺激,室温过高或过低;②对自己疾病和生命的担忧;③高强度的医源性刺激(频繁的监测、治疗,被迫更换体位);④各种疼痛;⑤原发疾病本身的损害;⑥对诊断和治疗措施的不了解与恐惧;⑦对家人和亲朋的思念,等。减轻焦虑的方法包括:保持患者舒适,提供充分镇痛,完善环境和使用镇静药物等。因此对焦虑患者应在充分镇痛和去除可逆性因素基础上开始镇静治疗。

躁动是一种伴有不停动作的易激惹状态,或是一种伴随着挣扎动作的极度焦虑状态。在综合ICU中,70%以上的患者发生过躁动。引起焦虑的原因均可以导致躁动;另外,某些药物的不良反应、休克、低氧血症、低血糖、酒精及其他药物的戒断反应、机械通气不同步等也是引起躁动的常见原因。研究显示,最易使重症患者焦虑、躁动的原因依次为:疼痛、失眠、经鼻或经口腔的各种插管、失去支配自身能力的恐惧感以及身体其他部位的各种管道限制等。躁动可导致患者与呼吸机对抗,耗氧量增加,意外拔除身上的各种装置和导管,甚至危及生命[11,15,16]

睡眠障碍:睡眠是人体不可或缺的生理过程,睡眠障碍可能会延缓组织修复、降低细胞免疫功能。睡眠障碍的类型包括:失眠、过度睡眠和睡眠一觉醒节律障碍等。失眠是一种睡眠质量或数量达不到正常需要的主观感觉体验,失眠或睡眠被打扰(碎片化睡眠)在ICU患者中极为常见。原因包括:①多种原因造成的持续噪音;②灯光刺激;③高强度的医源性刺激(如频繁的测量生命体征、查体,被迫更换体位);④疾病本身的损害以及患者对自身疾病的担心和不了解。患者在ICU睡眠的特点是短暂睡眠、觉醒和快速动眼睡眠交替。患者快动眼睡眠明显减少,睡眠质量下降,使得患者焦虑、抑郁或恐惧,甚至躁动,延缓疾病的恢复[17,18,19]

镇痛和镇静治疗的目的和意义在于:①消除或减轻患者的疼痛及躯体不适感,减少不良刺激及交感神经系统的过度兴奋;②帮助和改善患者睡眠,诱导遗忘,减少或消除患者对其在ICU治疗期间病痛的记忆;③减轻或消除患者焦虑、躁动甚至谵妄,防止患者的无意识行为(例如挣扎)干扰治疗,保护患者的生命安全;④减轻器官应激负荷,保护器官储备功能,维持机体内环境稳定。镇痛镇静可以降低患者的代谢速率,减少其氧耗氧需,使机体组织氧耗的需求变化尽可能适应受到损害的氧输送状态,并减轻各器官的代谢负担,从而减轻强烈病理因素所造成的损伤,为器官功能的恢复赢得时间创造条件[1]

3.1.2 问题2:需要尽可能祛除ICU中导致疼痛、焦虑和躁动的诱因吗?

推荐意见2:需尽可能祛除ICU中导致疼痛、焦虑和躁动的诱因(最佳实践声明)。

理论依据:ICU患者处于强烈的应激环境中,无论躯体或精神上都常常经历很多导致疼痛、焦虑和躁动的诱因,在镇痛镇静治疗中应首先尽量设法祛除上述诱因,并积极采用非药物治疗。研究表明,非药物治疗能降低患者疼痛评分及其所需要的镇痛和镇静药物的剂量[20,21]

推荐意见3:推荐在ICU通过改善患者环境、降低噪音、集中进行护理及医疗干预、减少夜间声光刺激等策略,促进睡眠,保护患者睡眠周期(强推荐,中级证据质量)。

理论依据:睡眠剥夺不仅易于造成患者精神障碍,还可损害组织修复及免疫机制[18],导致危重患者焦虑甚至谵妄[22,23,24],并增加机体的应激反应,而睡眠剥夺在ICU中非常普遍[18,19]。关于非药物干预手段对ICU患者睡眠的影响,2016年Litton等[25]的一项荟萃分析整合了5篇相关文献,其中包括3篇RCT和2篇队列研究,荟萃分析后发现,对ICU患者应用耳罩可改善患者的睡眠,证据质量为中级。Hu等[26]的系统性综述对其他非药物干预措施进行总结评价,指出集中进行护理及医疗干预可以改善部分患者睡眠状况,减少谵妄的发生,但证据强度较低,仍需进行大规模研究验证并观察有无负面影响。噪音也是影响患者睡眠的重要因素,监护仪、呼吸机等设备的报警声、电话铃声、医护人员的大声言语和行为的声音、甚至频繁开关门以及患者和设备的搬动转运均可能是ICU噪音的来源,世界卫生组织建议医院白天的噪音不超过40~45 dB,晚上不超过35 dB[27,28,29]。另外,其他改善睡眠的措施,如:音乐[30,31]、足部按摩等放松疗法[32],对重症患者睡眠影响暂未得出具有统计学意义的结论且证据等级偏低,尚需进一步验证。

推荐意见4:建议在可能导致疼痛的操作前,预先使用止痛药或非药物干预,以减轻疼痛(弱推荐,中级证据质量)。

理论依据:目前的证据表明,在翻身之前给予镇痛药物能显著降低患者的疼痛评分。Robleda等[33]进行的一项RCT研究入选ICU机械通气患者,随机分为芬太尼组(39例)和安慰剂组(36例),翻身前给予芬太尼或安慰剂发现,芬太尼组翻身时的疼痛发生率较低〔74%(95%可信区间,95%CI=58%~87%)比94%(95%CI=81%~99%),P=0.026〕,芬太尼组行为疼痛量表评分(BPS)的曲线下面积(AUC)明显低于安慰剂组〔132(108,150)比147(125,180),P=0.016〕,且芬太尼组与安慰剂组不良事件发生率差异无统计学意义(23%比14%,P=0.381)。de Jong等[34]的前瞻性干预研究同样显示,翻身前给予计划性的镇痛治疗能将翻身前后严重疼痛发生率从16%降至6%〔优势比(OR)=0.33,95%CI=0.11~0.98,P=0.04〕,严重不良事件发生率从37%降至17%。由此提示,在其他导致疼痛的操作前(如伤口处理、穿刺置管等)给予镇痛干预,可以减轻患者的疼痛。

此外,在进行导致疼痛的操作前给予音乐治疗、情绪舒缓及物理方法也能达到一定的缓解疼痛的效果。Jaber等[35]的随机交叉试验研究表明,音乐治疗能减轻气管插管患者拔除气管导管时的疼痛程度。其他2项在冠状动脉旁路移植术后患者中的研究则表明,拔除胸腔引流管前给予患者深呼吸情绪舒缓治疗能降低患者的疼痛程度[21,36]

另外,拔出胸腔引流管前使用冰袋也能起到较好的缓解疼痛的效果,目前有3项研究比较了预先使用冰袋能否减少拔除胸腔引流管的疼痛[21,37,38],整合该3项研究进行荟萃分析结果显示,预先使用冰袋能减少拔除胸腔引流管的疼痛〔拔除胸腔引流管后疼痛评分降低,加权均数差(SMD)=0.30,95%CI=0.01~0.59,P=0.04,I2=0%〕。进行GRADE分级后证据质量为中级。

3.1.3 问题3:实施镇痛镇静治疗是否应该常规评估患者的器官功能状态和器官储备能力?

推荐意见5:推荐实施镇痛镇静治疗前后应该常规评估患者的器官功能状态和器官储备能力(最佳实践声明)。

理论依据:镇痛和镇静治疗是一把"双刃剑",在降低应激、保护器官功能的同时,也可能抑制某些器官的重要生理功能(如呼吸、循环)或加重某些器官(如肝脏、肾脏)的代谢负担而导致器官功能损伤或失衡。镇痛镇静药物对患者各器官功能的影响是ICU医生必须重视的问题之一。在实施镇痛和镇静之前应对患者的基本生命体征(意识、心率、呼吸、血压、尿量以及体温)进行严密监测,以选择合适的药物及其剂量,确定观察监测的疗效目标,制定最好的个体化治疗方案,达到最小的不良反应和最佳的疗效。镇痛和镇静不足时,患者可能出现人机对抗、呼吸浅促、潮气量减少、心率增快、血氧饱和度降低等;镇痛和镇静过深时,患者可能表现为呼吸频率过慢、幅度减小、心率过慢、血压下降、缺氧和(或)二氧化碳蓄积等,应结合患者病情及器官功能状态,及时调整镇痛和镇静治疗方案,避免不良事件发生。对于血流动力学不稳定的患者,需要评估导致血流动力学不稳定的病因,选择对循环影响相对小的镇痛镇静药物,并在镇痛镇静的同时积极处理循环问题。对于肝肾功能不全的患者,需要积极评估肝肾功能,并选择合适的药物及其剂量和给药方式,同时根据肝肾功能情况对药物的剂量及时进行调整。对于呼吸衰竭而自主呼吸代偿性驱动很强的患者,需要合适的镇痛镇静深度,以尽可能减少患者的自主呼吸驱动、减轻对肺组织的牵张损伤。

3.2 疼痛的评估、治疗与监测
3.2.1 问题4:ICU患者是否应常规进行疼痛评估?

推荐意见6:推荐ICU患者应常规进行疼痛评估(强推荐,中级证据质量)。

理论依据:Georgiou等[39]的系统综述详细总结了疼痛评估对ICU重症患者的作用,但由于异质性太大未能进一步行荟萃分析。该综述指出,对患者定时进行疼痛评估,有助于进行恰当的镇痛治疗[40,41],并可以减少镇痛药物的使用剂量[42,43,44]。其中,纳入的一些文献显示,对患者定时进行疼痛评估,疼痛的发生率及疼痛程度均较未评估组显著降低[11,45,46]。同时,有部分文献还表明,进行常规的疼痛评估有助于缩短ICU住院时间[40,41,42,43]和机械通气时间[40],并降低呼吸机相关性肺炎(VAP)的发生率[11]。一项队列研究则表明,进行常规的疼痛评估还有助于降低病死率[47]。由此可见,应对ICU患者常规进行疼痛评估,选择恰当的方法定时评估疼痛程度及治疗反应并进行记录。

3.2.2 问题5:关于疼痛评估的方法应如何选择?

推荐意见7:建议对于能自主表达的患者应用数字评分表(NRS)评分,对于不能表达但具有躯体运动功能、行为可以观察的患者应用重症监护疼痛观察量表(CPOT)或BPS评分量表(弱推荐,中级证据质量)。

理论依据:疼痛评估应包括疼痛的部位、特点、加重及减轻因素和强度,最可靠有效的评估指标是患者的自我描述。使用各种评分方法来评估疼痛程度和治疗反应,应该定期进行、完整记录。常用的评分方法有:NRS、面部表情评分表(FPS)、BPS及CPOT等。对于能自主表达的患者目前较常应用的方法是NRS评分[3],Rahu等[48]的前瞻性研究表明,对于接受机械通气治疗且能自主表达的患者,NRS评分具有较好的疼痛评价效果。在不能表达、具有躯体运动功能、行为可以观察的患者,BPS和CPOT对于疼痛程度的评价具有较高的可信性和一致性,虽然BPS易于记忆,但两者差异无统计学意义[49],同时清醒患者的BPS或CPOT评分与NRS评分具有较好的相关性[50]。近年来也有一些在特殊人群中的研究,如心脏外科重症患者[51]、创伤患者和神经外科患者[52]、未昏迷谵妄患者[53],表明CPOT评分是一种有效的疼痛评估工具[54]。以下是3种常用疼痛评估工具的详细介绍。

3.2.2.1 NRS:

NRS是一个从0~10的点状标尺,0代表不痛,10代表疼痛难忍,由患者从上面选一个数字描述疼痛(图1)。用NRS评价老年患者急、慢性疼痛的有效性及可靠性已获得证实。

点击查看大图
图1
数字疼痛评分尺
图1
数字疼痛评分尺
3.2.2.2 BPS:

即从面部表情、上肢运动及机械通气顺应性3个疼痛相关行为指标方面进行评估(表4),评估患者的疼痛程度时,每个条目根据患者的反应情况分别赋予1~4分,将3个条目的得分相加,总分为3~12分,总分越高说明患者的疼痛程度越高,一般使用BPS完成对患者的疼痛评估约需要2~5 min。但该评分有一定的局限性,在未行机械通气的患者中无法使用,所以Chanques等[49]对该量表进行了改良,将原量表中"机械通气顺应性"这个条目更换为"增加非插管患者发声"这一指标,另外2个条目保留不变,发展为BPS-NI,每个条目同样根据患者的反应情况分别赋予1~4分,将3个条目的得分相加,总分为3~12分,总分越高说明患者的疼痛程度越高。

点击查看表格
表4

行为疼痛量表(BPS)

表4

行为疼痛量表(BPS)

疼痛行为相关指标 1分 2分 3分 4分
面部表情 放松 部分紧张 完全紧张 扭曲
上肢运动 无活动 部分弯曲 手指、上肢完全弯曲 完全回缩
机械通气顺应性(插管) 完全能耐受 呛咳,大部分时间能耐受 对抗呼吸机 不能控制通气
发声(非插管) 无疼痛相关发声 呻吟≤3次/min且每次持续时间≤3 s 呻吟>3次/min或每次持续时间>3 s 咆哮或使用"哦""哎呦"等言语抱怨,或摒住呼吸
3.2.2.3 CPOT:

该量表包括面部表情、动作、肌张力、发声/对机械通气的顺应性4个疼痛行为,每个条目0~2分,总分0~8分;其中0分代表不痛,8分代表最痛(表5)。CPOT是一种特别为无法交流的ICU患者开发的疼痛行为客观量表。

点击查看表格
表5

重症监护疼痛观察量表(CPOT)

表5

重症监护疼痛观察量表(CPOT)

疼痛行为相关指标 描述 状态 评分(分)
面部表情 未观察到肌肉紧张 自然、放松 0
表现出皱眉、眉毛放低、眼眶紧绷和提肌收缩 紧张 1
以上所有的面部变化加上眼睑轻度闭合 扮怪相 2
动作 不动(并不代表不存在疼痛) 无体动 0
缓慢、谨慎的运动,触碰或抚摸疼痛部位,通过运动寻求关注 保护性体动 1
拉拽管道,试图坐起来,运动肢体/猛烈摆动,不遵从指挥令,攻击工作人员,试图从床上爬出来 烦乱不安 2
肌张力(通过被动的弯曲和伸展来评估) 对被动的运动不作抵抗 放松 0
对被动的运动动作抵抗 紧张和肌肉僵硬 1
对被动的运动动作剧烈抵抗,无法将其完成 非常紧张或僵硬 2
对机械通气顺应性(气管插管患者) 无警报发生,舒适地接受机械通气 耐受呼吸机或机械通气 0
警报自动停止 咳嗽但是耐受 1
不同步:机械通气阻断,频繁报警用 对抗呼吸机 2
 或发声(拔管后的患者) 正常腔调讲话或不发声 正常腔调讲话或不发声 0
叹息,呻吟 叹息,呻吟 1
喊叫,啜泣 喊叫,啜泣 2
3.2.3 问题6:镇痛是否应该作为镇静的基础?

推荐意见8:推荐在镇静治疗的同时或之前需给予镇痛治疗(强推荐,中级证据质量)。

理论依据:大部分患者烦躁的首要原因是疼痛和不适感,故重症患者应首先考虑镇痛治疗,镇痛应作为镇静的基础[55]。研究表明,联合镇痛治疗的镇静方案能减少疼痛发生、降低患者镇痛评分、降低机械通气的使用率[56]、缩短气管插管时间[57]及住院时间。使用镇痛为先的镇静方法也要权衡镇痛药可干扰呼吸动力、减少胃动力及为提供肠内营养提高难度,同时还要考虑停药所导致的疼痛复发。

3.2.4 问题7:常用的阿片类药物有哪些?其药理特性、使用方法、不良作用如何?

推荐意见9:ICU患者非神经性疼痛,建议首选阿片类药物作为镇痛药物(弱推荐,低级证据质量)。

阿片类药物为强效中枢镇痛剂之一,具有镇痛效果强、起效快、可调性强、价格低廉等优点,是ICU患者疼痛管理中的基本药物[33,55,56,58,59,60]。但不同阿片类药物作用的阿片类受体及药理特点不同,应根据患者具体情况选择合适的药物。ICU常用的阿片类药物包括吗啡、芬太尼、瑞芬太尼、舒芬太尼、二氢吗啡酮、美沙酮、布托啡诺以及地佐辛等[55]。主要药物的特性见表6

点击查看表格
表6

阿片类药物的药物学特性

表6

阿片类药物的药物学特性

阿片类药物 起效时间 半衰期 负荷剂量 维持剂量 不良反应
芬太尼 1~2 min 2~4 h 0.35~0.50 μg/kg 0.7~10.0 μg·kg-1·h-1 比吗啡更少的低血压;累积有肝损害
吗啡 5~10 min 3~4 h 2~4 mg 2~30 mg/h 累计用量有肝肾损害;有一定的组织胺释放
瑞芬太尼 1~3 min 3~10 min 0.5~1.0 μg/kg iv(>1 min) 0.02~0.15 μg·kg-1·h-1 没有肝肾损害;如果体重>130%理想体重,使用理想体重计算
舒芬太尼 1~3 min 784 min左右 0.2~0.5 μg/kg 0.2~0.3 μg·kg-1·h-1 剂量个体差异性较大,分布半衰期短,代谢半衰期长,长期使用可能延长机械通气时间
3.2.4.1 芬太尼:

镇痛效价是吗啡的100~180倍,研究表明芬太尼应用于ICU中,能明显降低疼痛评分[56]和疼痛发生率[33]。但由于芬太尼的表观分布容积较大,反复多次给药易于蓄积,不宜作为长期镇痛治疗的药物。

3.2.4.2 瑞芬太尼:

为芬太尼类μ型阿片受体激动剂,主要与α-1-酸性糖蛋白结合,在组织和血液中被迅速水解,故起效快,维持时间短。正因为上述优势,有研究显示,瑞芬太尼能明显缩短机械通气时间及ICU住院时间[59,61,62,63,64,65]。通过整合6篇关于瑞芬太尼与芬太尼、吗啡等其他阿片类镇痛药物在ICU患者镇痛应用比较的研究[57,59,61,63,64,65]进行荟萃分析后发现,瑞芬太尼能够缩短机械通气时间〔均数差(MD)=-0.42,95%CI=-0.71~-0.13,P=0.004〕和ICU住院时间(MD=-0.82,95%CI=-1.48~-0.16,P=0.01)。进行GRADE分级后证据质量为低级。瑞芬太尼在重症患者镇痛治疗中的应用逐渐增加。

3.2.4.3 舒芬太尼:

镇痛作用很强,为芬太尼的5~10倍。国内一项研究表明舒芬太尼在ICU镇痛治疗中能减少镇静药物剂量[60]。因其镇痛效果明确、起效快、蓄积小、对呼吸抑制作用小[58],近年来在ICU重症患者中的应用逐渐增多。

阿片类药物的不良反应主要是引起呼吸抑制、血压下降和胃肠蠕动减弱,在老年人尤其明显。吗啡类衍生物氢吗啡酮[66]和阿片受体激动剂布托啡诺[67]可能在降低呼吸抑制及胃肠道不良反应方面具有一定的优势,但仍需进一步的临床试验验证。

3.2.5 问题8:镇痛治疗是否需要联合应用非阿片类镇痛药物?

推荐意见10:建议联合应用非阿片类镇痛药物以减少阿片类药物的用量及相关不良反应(弱推荐,高级证据质量)。

对于非神经性疼痛,近年来有研究表明氯胺酮[68,69,70,71]、非甾体类抗炎药[72,73,74]、奈福泮[75,76]和加巴喷丁[77]等非阿片类镇痛药物能有效减轻重症患者的非神经性疼痛[78]。而对于神经性疼痛,加巴喷丁[79,80]和卡马西平[81]具有较好的镇痛作用。非阿片类药物可以用来减少阿片类药物的用量和减少阿片类药物的不良反应。目前共有8项RCT研究涉及在重症患者中应用非阿片类镇痛药物能否减少阿片类镇痛药物的应用[69,70,72,77,81,82,83,84],整合其中3项RCT[73,82,83]的结果进行荟萃分析后发现,非阿片类镇痛药物的应用能显著减少阿片类药物的用量(MD=-12.68,95%CI=-15.61~-9.76,P<0.000 01)。进行GRADE分级后证据质量为中级。另外,目前共有5项RCT研究涉及在重症患者中应用非阿片类镇痛药物能否减少阿片类镇痛药物相关不良反应[76,79,82,83,84],整合这5项RCT结果进行荟萃分析后同样发现,应用非阿片类镇痛药物能显著降低恶心、呕吐等阿片类不良反应的发生(OR=0.42,95%CI=0.26~0.67,P=0.000 4),进行GRADE分级后证据质量分别为高级和中级。

3.2.6 问题9:实施镇痛后,还需要对镇痛效果进行密切评估吗?

推荐意见11:推荐在实施镇痛后,要对镇痛效果进行密切评估,并根据评估结果进一步调整治疗方案(最佳实践声明)。

理论依据:镇痛治疗的目的在于减轻甚至消除机体器官因为疼痛而导致的过度代偿作功,保护器官储备功能。因此,实施镇痛后必须密切监测镇痛效果和循环呼吸等器官功能,根据镇痛的效果随时调整药物的剂量,以免镇痛不足或过量。镇痛不足则达不到预期的镇痛效果,而镇痛过量则可能引起呼吸抑制、抑制胃肠道运动等不良反应,最终延长机械通气时间、ICU住院时间,甚至增加病死率。一般而言,镇痛效果评估的方法及预期目标:对于能自主表达的患者应用NRS评分,其目标值为<4分;对于不能表达、运动功能良好、行为可以观察的患者应用BPS评分或CPOT评分,其目标值为BPS<5分和CPOT<3分。

3.3 焦虑和躁动的评估、治疗及监测
3.3.1 问题10:ICU患者镇静的深度应如何选择?

推荐意见12:建议ICU患者根据器官功能状态个体化选择镇静深度,实施目标指导的镇静策略(弱推荐,中级证据质量)。

理论依据:所谓目标指导的镇静策略,即ICU患者根据器官功能状态,个体化确立镇静程度的目标,并根据目标连续评估、随时调整治疗方案,以尽可能使镇静治疗扬利抑弊。

在保证患者器官功能处于适度代偿范围的基础上,调节镇静药物剂量,维持患者处于最合适的镇静状态。镇静的深浅程度应根据病情变化和患者器官储备功能程度而调节变化。对于器官功能相对稳定、恢复期的患者,应给予浅镇静,以缩短机械通气时间和ICU住院时间[85]。但对处于应激急性期、器官功能不稳定的患者,宜给予较深镇静以保护器官功能,这些情况主要包括:①机械通气人机严重不协调;②严重急性呼吸窘迫综合征(ARDS)早期短疗程神经-肌肉阻滞剂、俯卧位通气、肺复张等治疗时作为基础;③严重颅脑损伤有颅高压;④癫痫持续状态;⑤外科需严格制动者;⑥任何需要应用神经-肌肉阻滞剂治疗的情况,都必须以充分的深度镇痛镇静为基础。

通过检索文献,目前共有5篇RCT研究比较了采用目标指导镇静与不采用目标指导镇静对ICU患者机械通气时间、ICU住院时间、总住院时间、住院病死率、ICU病死率、意外拔管率、再插管率和气管切开率等8项临床指标的影响[85,86,87,88,89],荟萃分析显示:目标指导镇静可以缩短总住院时间(MD=-3.67,95%CI=-5.31~-2.03,P<0.000 01)和ICU住院时间(MD=-1.52,95%CI=-2.57~-0.48,P=0.004),但对机械通气时间、住院病死率和ICU病死率无影响;另外,目标指导镇静不增加意外拔管率、再插管率和气管切开率。进行GRADE分级后总住院时间和ICU住院时间的证据质量为中级。

3.3.2 问题11:ICU患者镇静中应常规实施每日镇静中断(DSI)吗?

推荐意见13:应根据镇静状态的评估结果随时调整镇静深度,对于深度镇静患者宜实施DSI(弱推荐,中级证据质量)。

理论依据:DSI是指在连续性使用镇静药物的过程中,每日进行短时间的停用镇静药物,待患者恢复出现基本的遵嘱反应和神经肌肉动作后再重新给予镇静治疗。具体标准为满足以下4项中的3项:遵嘱睁眼、眼神追踪、遵嘱握拳、遵嘱动脚趾。DSI的目的是限制镇静药物的过量使用,通过对患者每日短时间中断镇静药物输注以减少其体内的镇静药物蓄积,进而缩短机械通气时间,改善临床结局。但近年来关于DSI的研究众说纷纭,最初发现DSI能改善预后的研究,研究对象多为深镇静的患者,而近些年随着新型镇静药物的推广及临床医生对镇静深度认识的变迁,关于DSI的研究则多为阴性结果。对于无需深镇静的患者,更需要强调的是随时调整镇静深度,而不仅仅是DSI,但对于深镇静的患者,仍需实施DSI以减少镇静药物的过量使用。

目前,已经有多项RCT评价了实施DSI的效果,但其结果各异。通过文献检索,本指南修订小组共纳入9篇RCT评价DSI在ICU患者中对机械通气时间、ICU住院时间、住院总时间、ICU病死率等影响的文献[90,91,92,93,94,95,96,97,98]。其中7篇文献[90,91,93,94,95,97,98]结局指标包含机械通气时间,进行荟萃分析后发现,DSI不能缩短ICU患者的机械通气时间(MD=-0.30,95%CI=-1.25~0.65,P=0.54)。有部分文献采用了28 d内无机械通气时间作为结局指标[92,93,96,97],荟萃分析显示,DSI不能延长ICU患者28 d内无机械通气时间(MD=-0.22,95%CI=-4.24~3.80,P=0.91)。另外荟萃分析还显示,DSI对ICU患者的ICU住院时间[90,91,92,93,94,95,96,97,98]无影响(MD=-0.94,95%CI=-2.91~1.03,P=0.35),对总住院时间[90,91,92,93,94,95,96,97,98]无影响(MD=-1.35,95%CI=-3.26~5.96,P=0.57),对ICU病死率[90,91,92,93,94,97,98]无影响〔相对危险度(RR)=0.99,95%CI=0.77~1.27,P=0.93〕,对意外拔管率[91,92,93,95,96,98]无影响(RR=1.17,95%CI=0.71~1.91,P=0.55),对拔管后48 h内再插管率[92,95,96,98]无影响(RR=0.94,95%CI=0.68~1.31,P=0.71),但是,DSI能降低ICU患者的气管切开率[91,92,93,95,96,98]RR=0.74,95%CI=0.58~0.93,P=0.01)。进行GRADE分级后机械通气时间和气管切开率的证据质量为中级,其余为低级。

3.3.3 问题12:ICU患者镇静药物应如何选择?

推荐意见14:苯二氮类和丙泊酚仍然应作为目前镇静治疗的基本药物(最佳实践声明)。

右美托咪定通过拮抗中枢及外周儿茶酚胺的作用,兼具轻度镇静和镇痛效果,与其他镇痛镇静药物具有协同作用,可以缩短机械通气时间和ICU住院时间(弱推荐,低级证据质量)。

理论依据:目前ICU临床上常用的镇静药物有苯二氮类、丙泊酚和右美托咪定,具体药理机制、用法用量及不良反应见表7

点击查看表格
表7

常用镇静药物特点

表7

常用镇静药物特点

镇静药物 首剂后起效时间 清除半衰期 首次剂量 维持剂量 不良反应 备注
咪唑安定 2~5 min 3~11 h 0.01~0.05 mg/kg 0.02~0.10 mg·kg-1·h-1 呼吸抑制、低血压、可能导致谵妄 对循环影响小;酒精、药物戒断反应的一线选择
地西泮 2~5 min 20~120 h 5~10 mg 0.03~0.10 mg/kg 呼吸抑制、低血压 半衰期过长,不容易实现"浅镇静"策略;不推荐作为镇静一线选择
丙泊酚 1~2 min 快速清除34~64 min,缓慢清除184~382 min 5 μg·kg-1·min-1 1~4 mg·kg-1·h-1 低血压、呼吸抑制、高甘油三酯、输注点疼痛、丙泊酚输注综合征 儿童镇静时要特别注意丙泊酚输注综合征;高甘油三酯血症患者慎用;可以降低颅压;谵妄发生率低
右美托咪定 5~10 min 1.8~3.1 h 1 μg/kg,超过10 min缓慢输注 0.2~0.7 μg·kg-1·min-1 心动过缓、低血压 可以预防、治疗谵妄;对循环影响小
3.3.3.1 苯二氮类药物:

苯二氮类药物是中枢神经系统γ氨基丁酸(GABA)受体激动剂,具有抗焦虑、遗忘、镇静、催眠和抗惊厥作用。ICU最常用的苯二氮类药物为咪唑安定,其作为该类药物中相对水溶性最强的药物,具有起效快、持续时间相对短、血浆清除率较高的特点。苯二氮类药物是ICU患者重要的镇静药物之一,特别是用于焦虑、癫痫发作以及酒精戒断治疗。并且苯二氮类药物在深度镇静、不注意、不记忆(遗忘)或联合其他镇痛镇静药使用以降低彼此不良反应方面仍具有很重要的作用[4]

但近年来的研究表明,苯二氮类药物容易引起蓄积、代谢较慢、增加镇静深度,从而进一步延长机械通气时间及住院时间。通过文献检索及筛查,纳入了10篇RCT [99,100,101,102,103,104,105,106,107,108]的11项研究(其中郭丰等[107]包含2项研究)。11项研究均比较了苯二氮类药物与非苯二氮类药物对ICU住院时间的影响,进行荟萃分析后显示,苯二氮类药物会明显延长ICU住院时间(MD=2.10,95%CI=3.17~1.03, P=0.000 1)和机械通气时间[99,100,101,102,103,104,106,107,108]MD=1.60,95%CI=2.35~0.85,P<0.000 1)。相对于苯二氮类药物,非苯二氮类药物可以降低谵妄的发生率[101,102,103,104,108]RR=0.67,95%CI=0.49~0.93,P=0.02),但对病死率[99,100,103,104,106,107]并无影响(RR=1.03,95%CI=0.85~1.25,P=0.77)。进行GRADE分级后证据质量级别为低级。

3.3.3.2 丙泊酚:

丙泊酚也是ICU常用的镇静药物之一,其特点是起效快、作用时间短、撤药后能快速清醒、且镇静深度呈剂量依赖性,丙泊酚亦可产生遗忘作用和抗惊厥作用。另外,丙泊酚具有减少脑血流、降低颅内压(ICP)和脑氧代谢率(CMRO2)的作用,用于颅脑损伤患者的镇静可减少ICP的升高。丙泊酚单次注射时可出现暂时性呼吸抑制和血压下降、心动过缓,尤见于心脏储备功能差、低血容量的患者。其他的不良反应包括高甘油三酯血症、急性胰腺炎和横纹肌损伤。丙泊酚使用时可出现外周静脉注射痛,因此临床多采用持续缓慢静脉输注方式。另外,部分患者长期使用后可能出现诱导耐药。

因巨大的分布容积所致的短效性,丙泊酚较苯二氮类药物能改善患者ICU住院时间等指标,共纳入了4篇RCT比较了应用丙泊酚与苯二氮类药物对ICU住院时间的影响 [99,105,106,107],进行荟萃分析后发现,应用丙泊酚能缩短ICU住院时间(MD=-3.33,95%CI=-5.26~-1.41,P=0.000 7)。其中3篇比较了应用丙泊酚与苯二氮类药物对机械通气时间和短期病死率的影响[99,106,107],进行荟萃分析后发现,与苯二氮类药物相比,应用丙泊酚能缩短机械通气时间(MD=-2.57,95%CI=-3.65~-1.49,P<0.000 1),但对短期病死率无影响(RR=0.94,95%CI=0.52~1.68,P=0.83)。进行GRADE分级后,机械通气时间的证据质量级别为中级,其余2项指标为低级。

3.3.3.3 右美托咪定:

右美托咪定是选择性α2受体激动剂,通过抑制蓝斑核去甲肾上腺素释放和竞争性拮抗α2受体,起到减轻交感兴奋风暴、冷静、抗焦虑和轻度的镇痛镇静作用,没有抗惊厥作用。由于不作用于中脑网状上行系统和GABA受体,使用右美托咪定镇静的患者更容易唤醒,呼吸抑制较少。右美托咪定一般在给药15 min内起效,镇静高峰出现在静脉给药后1 h内,能快速分布于周围组织并被肝脏代谢。对于肝功能正常的患者来说,清除半衰期大约为3 h。重度肝功能障碍的患者,会延长右美托咪定的清除,应适当降低剂量。右美托咪定最常见的不良反应是低血压和心动过缓,静脉负荷剂量过快给予可引起血压及心率波动,故在ICU给予负荷剂量时一定要注意输注速度,必要时可适当延长输注时间。另外,右美托咪定兼具镇痛作用,可减少阿片类药物的需求。

目前,共有23篇针对非心脏手术ICU患者的RCT研究[90,100,102,103,104,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126],分析右美托咪定是否可缩短ICU患者的机械通气时间和ICU住院时间、降低谵妄发生率、增加心动过缓及低血压事件的发生。整合这些RCT结果进行荟萃分析后发现,相比苯二氮类和丙泊酚等镇静药物,应用右美托咪定可以明显缩短ICU住院时间[100,102,103,104,112,113,115,116,117,118,119,120,126]MD=-2.17,95%CI=-3.06~-1.27,P<0.000 01)和机械通气时间[100,102,104,110,113,114,117,121,122,123,124,125,126]MD=-6.08,95%CI=-9.86~-2.30,P=0.002);但是应用右美托咪定确实会增加心动过缓[100,102,103,104,109,116,117,119,122,126]RR=2.02,95%CI=1.64~2.49,P<0.000 01)及低血压[100,102,104,109,117,123,126]RR=1.48,95%CI=1.10~1.98,P=0.009)事件的发生。进行GRADE分级后证据质量级别为低级。

另外,我们还整合了5篇成人心脏术后ICU患者的RCT研究[127,128,129,130,131],进行荟萃分析后显示,相比丙泊酚和苯二氮类药物,应用右美托咪定在机械通气时间(MD=-0.53,95%CI=-1.74~0.68,P=0.39)和ICU住院时间(MD=-0.36,95%CI=-0.98~0.26,P=0.26)的比较上差异并无统计学意义。进行GRADE分级后机械通气时间的证据质量级别为中级,ICU住院时间为低级。

3.3.4 问题13:ICU患者中神经-肌肉阻滞剂应用指征与时机是什么?

推荐意见15:所有神经-肌肉阻滞药物必须在充分镇痛镇静治疗的基础上加以使用(最佳实践声明)。

推荐意见16:对于重度ARDS早期患者,在充分镇痛镇静治疗的基础上可以考虑使用神经-肌肉阻滞剂(弱推荐,中级证据质量)。

理论依据:清醒肌松是一种等同于麻醉时"术中知晓"的极度危险状态,它可以使患者出现严重交感风暴、应激状态和濒死感,显著加大循环呼吸等器官的代谢负担。因此神经-肌肉阻滞剂必须在充分镇痛镇静的前提下应用。目前主要应用在某些特定的危重疾病状态,例如:重度ARDS早期、哮喘持续状态、癫痫持续状态、严重惊厥以及破伤风等肌肉强烈痉挛的病症。目前关于重度ARDS早期神经-肌肉阻滞剂应用的证据主要来自法国的同一个研究团队发表的3项RCT[132,133,134],Neto等[135]对上述3项RCT数据整合进行荟萃分析,结果显示,与安慰剂相比,早期短时间(48 h内)应用神经-肌肉阻滞剂能显著降低中重度ARDS患者的ICU病死率(RR=0.71,95%CI=0.55~0.90,P=0.005)、28 d病死率(RR=0.68,95%CI=0.51~0.92,P=0.01)和气压伤的风险(RR=0.45,95%CI=0.22,0.92,P=0.03),且不增加ICU获得性肌无力(ICUAW)的发生风险(RR=1.13,95%CI=0.76~1.67,P=0.54)。进行GRADE分级之后,ICU病死率的证据质量级别为中级,其余为低级。

另外,鉴于神经-肌肉阻滞剂易导致患者神经肌肉耦联损伤和肌无力、痰液引流障碍及肺不张等不良反应[136,137,138],故临床上应用神经-肌肉阻滞剂仍需慎重。

3.3.5 问题14:实施镇静后,需要对镇静深度进行密切监测吗?

推荐意见17:推荐实施镇静后要对镇静深度进行密切监测,Richmond躁动-镇静评分(RASS)和镇静-躁动评分(SAS)是常用可靠的镇静评估工具(强推荐,中级证据质量)。

理论依据:镇痛镇静治疗的目的是在维持机体基本灌注氧合的基础上,尽可能保护器官储备功能,减轻器官过度代偿的氧耗作功。同时,保持危重症患者处于最舒适和安全的镇静状态是ICU镇静治疗的重要目标之一。因此,需要定时评估患者的镇静程度以便于调整镇静药物及其剂量以达到预期目标。目前临床常用的主观镇静评分法有RASS(表8)、Ramsay评分、SAS(表9),客观评估方法有脑电双频指数(BIS)、肌肉活动评分法(MAAS)等,但目前没有证据证明客观评估方法对于非肌松治疗的患者有益。

点击查看表格
表8

Richmond躁动-镇静评分(RASS评分)

表8

Richmond躁动-镇静评分(RASS评分)

评分(分) 分级 描述
4 有攻击性 非常有攻击性,暴力倾向,对医务人员造成危险
3 非常躁动 非常躁动,拔出各种导管
2 躁动焦虑 身体激烈移动,无法配合呼吸机
1 不安焦虑 焦虑紧张,但身体活动不剧烈
0 清醒平静 清醒自然状态
-1 昏昏欲睡 没有完全清醒,声音刺激后有眼神接触,可保持清醒超过10 s
-2 轻度镇静 声音刺激后能清醒,有眼神接触,<10 s
-3 中度镇静 声音刺激后能睁眼,但无眼神接触
-4 深度镇静 声音刺激后无反应,但疼痛刺激后能睁眼或运动
-5 不可唤醒 对声音及疼痛刺激均无反应
点击查看表格
表9

镇静-躁动评分(SAS评分)

表9

镇静-躁动评分(SAS评分)

评分(分) 分级 描述
7 危险躁动 拉拽气管内插管,试图拔除各种导管,翻越窗栏,攻击医护人员,在床上辗转挣扎
6 非常躁动 需要保护性束缚并反复语言,提示劝阻咬气管插管
5 躁动 焦虑或身体躁动,经言语提示劝阻可安静
4 安静合作 容易唤醒,服从指令
3 镇静 嗜睡,语言刺激或轻轻摇动可唤醒并能服从简单指令,但又迅速入睡
2 非常镇静 对躯体刺激有反应,不能交流及服从指令,有自主运动
1 不能唤醒 对恶性刺激无或仅有轻微反应,不能交流及服从指令

理想的镇静评分法应符合易于评估和记录,有助于镇静程度的准确判断并指导治疗,即:简单、准确、相对客观易重复。目前临床应用的多种镇静评分系统中,RASS和SAS评分法因其简单、易操作、对镇静目标具有良好的指示性而被广泛应用于临床,并能指导镇静药物剂量的调整[139,140]。2013年的一篇综述[141]共纳入36篇文章,包含了11种镇静评分法,该研究制定了1项0~20分的评分系统(15~20分为非常好,12~14.9分为中等,10~11.9分为差,低于10分为非常差),囊括了项目选择和内容验证、可靠性、真实性、可行性及对患者实施结果的相关性和影响等5个方面的内容,来评估这11种评分法的有效性及可行性。结果显示,对于ICU患者,众多镇静评分法中RASS和SAS是评估患者镇静深度及镇静质量最有效和可靠的方法(RASS:19.5分,SAS:19分)。另一项研究对比了格拉斯哥昏迷评分(GCS)、Ramsay、RASS、SAS 4种评分方法,结果显示,RASS与SAS的相关性最好,并且便于医护人员床旁评估,这两种评估方法可用于日常临床评估、指导镇静治疗,并可避免过度使用镇静药物、减少镇静药物相关并发症[142]。此外,SAS和RASS评分还有助于对谵妄的筛查与评估,且相关性良好[143]

建议实施镇静后,宜连续评估镇静深度,调整治疗,趋近目标。浅镇静时,镇静深度的目标值为RASS -2~1分,SAS 3~4分;较深镇静时,镇静深度的目标值为RASS -3~-4分,SAS 2分;当合并应用神经-肌肉阻滞剂时,镇静深度的目标值应为RASS -5分,SAS 1分。

推荐意见18:对于联合使用神经-肌肉阻滞剂患者的镇静程度评估,建议使用客观脑功能监测(弱推荐,低级证据质量)。

理论依据:接受神经-肌肉阻滞剂治疗的患者,因其达到一定肌松深度后将失去神经肌肉运动反应,难以通过主观镇静评分对其进行镇静深度的评估,此时,客观脑功能监测将是一种补充措施[144]。研究表明,包括BIS、麻醉趋势指数(NI)、状态熵(SE)、患者状态指数(PSI)等在内的多种原来在麻醉中应用的客观脑功能监测,可作为ICU患者镇静评估的客观标准[145,146,147,148,149,150,151,152,153,154,155,156,157,158,159]。也有研究提出客观脑功能监测设备增加了费用和人力消耗,与主观评分系统相比,在评价镇静深度方面,客观评价方法并无显著益处[160,161,162,163,164]。但对于ICU肌松患者存在镇静不全的风险、而肌松患者主观镇静评分无法获得时,BIS等监测可作为一种补充手段帮助识别这些问题[153,165]

3.4 谵妄及其防治:

谵妄是多种原因引起的一过性的意识混乱状态伴有认知功能障碍。短时间内出现意识障碍和认知能力改变是谵妄的临床特征,意识清晰度下降或觉醒程度降低是诊断的关键。ICU患者因焦虑、麻醉、代谢异常、缺氧、循环不稳定或神经系统病变等原因,可以出现谵妄症状,且长时间置身于陌生而嘈杂的ICU环境会加重谵妄的症状。谵妄分为兴奋型、缄默型和混合型,缄默型因不易被识别往往预后更差。

3.4.1 问题15:谵妄是ICU患者预后不佳的危险因素吗?

推荐意见19:谵妄是ICU患者预后不佳的危险因素,推荐密切关注并早期发现ICU患者的谵妄(强推荐,中级证据质量)。

理论依据:近年来的研究表明,老年谵妄患者的住院时间明显延长,每日住院费用及病死率均显著增加[166,167,168,169]。关于谵妄对ICU患者的影响共筛选出10项队列研究[166,167,168,169,170,171,172,173,174,175],进行荟萃分析后显示,谵妄可显著增加ICU患者的病死率(OR=3.42,95%CI=2.45~4.76,P<0.000 01),延长ICU住院时间(MD=2.66,95%CI=1.83~2.69,P<0.000 001)。进行GRADE分级后病死率的证据质量级别为低级,ICU住院时间为中级。

3.4.2 问题16:谵妄的相关因素包括哪些?

关于谵妄的危险因素共纳入中、英文文献96篇[176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271],均为队列和观察性研究,对其中118个变量进行了荟萃分析,结果显示,谵妄相关危险因素包括高龄、慢性阻塞性肺疾病病史、高血压病史、高血糖及糖尿病病史、心力衰竭、抑郁病史、谵妄病史、脑血管病史、酗酒病史、脓毒症、肾功能不全、美国纽约心脏协会(ASA)心功能分级≥Ⅲ级、急诊手术、苯二氮类药物等镇静药物应用、阿片类药物应用、皮质醇水平升高、低氧血症、机械通气、贫血、电解质紊乱、认知损伤、体外循环、束缚及心律失常等。另外,2015年Zaal等[272]的荟萃分析纳入了33项研究,最终总结出11个谵妄的独立危险因素,包括:年龄、痴呆、高血压、急诊手术、创伤、急性生理学与慢性健康状况评分Ⅱ(APACHEⅡ)评分、机械通气、代谢性酸中毒、谵妄病史、昏迷、多器官功能衰竭,而右美托咪定应用为谵妄的保护因素。

3.4.3 问题17:哪些ICU患者需要进行谵妄评估?如何选择评估工具?

推荐意见20:建议对于RASS≥-2分、且具有谵妄相关危险因素的ICU患者应常规进行谵妄评估。建议使用ICU患者意识模糊评估法(CAM-ICU)或重症监护谵妄筛查量表(ICDSC)作为ICU患者的谵妄评估工具(弱推荐,低级证据质量)。

理论依据:谵妄在ICU中,尤其是机械通气患者中有较高的发生率[273,274]。ICU工作人员容易忽视非躁动型谵妄,而正如前所述,谵妄是ICU患者预后不佳的独立危险因素,因此监测谵妄具有重要意义。而对于深度镇静的患者(RASS≤-3分),其无法与工作人员进行有效的交流和配合,从而无法完成评估。综上所述,对于RASS≥-2分、具有谵妄相关危险因素的ICU患者应常规进行谵妄监测,从而达到早期预警、早期防治的效果。

谵妄的诊断主要依据临床检查及病史。2012年Gusmao-Flores等[275]的荟萃分析共纳入了9篇文献[175,276,277,278,279,280,281,282,283],结果显示,CAM-ICU(表10)和ICDSC具有较高的敏感性及特异性,为可靠的监测方法。2013年Shi等[284]的荟萃分析纳入了22项研究,评估CAM和CAM-ICU对谵妄的评估效果,结果发现两者均具有较高的敏感性和特异性。

点击查看表格
表10

ICU患者意识模糊评估法(CAM-ICU)谵妄评分表

表10

ICU患者意识模糊评估法(CAM-ICU)谵妄评分表

临床特征 评价指标
1.精神状态突然改变或波动 任一问题回答"是",该特征为阳性
·与基础水平相比患者的精神状态是否有突然变化?
·患者的精神状态(如RASS、GCS评分或以往的谵妄评估)在过去的24 h内有无起伏波动?
2.注意力不集中 注意力筛查试验,错误≥3个该特征为阳性
数字测验:"我读10个数字,你听到1时就握我的手。"
用正常语调读数:8、1、7、5、1、4、1、1、3、6。
·在读"1"时患者未握手为错误。
·在读"1"以外的数字时患者握手也为错误。
3.意识水平变化 完全清醒以外的任何意识状态(即RASS≠0),该特征为阳性
·正常——对周围环境完全知道,并且有适当的互动;
·警惕——过度的警戒状态;
·嗜睡;
·昏睡;
·昏迷。
4.思维无序 错误≥2个,该特征为阳性
A组问题: B组问题:
①石头会飘在水面上吗? ①树叶会飘在水面上吗?
②海里有鱼吗? ②海里有大象吗?
③ 1斤比2斤重吗? ③ 2斤比1斤重吗?
④你能用锤子砸钉子吗? ④你能用锤子砍木头吗?
⑤指令:
·对患者说:"举起这么多手指"(在患者面前举起2根手指),"现在用
另一只手做同样的事"(不重复手指的数目)。
·如果患者不能移动手臂,要求患者
"比这个多举一根手指"。
诊断 临床特征1+2+3或4,可诊断患者存在谵妄

注:ICU为重症医学科,RASS为Richmond躁动-镇静评分,GCS为格拉斯哥昏迷评分

3.4.4 问题18:如何预防ICU谵妄?

虽然导致谵妄的诱因很多,其具体机制仍尚未完全清楚,但谵妄所表现的意识与认知功能损伤,一定有脑组织损伤作为物质基础。因此,预防和及时纠正各种可能导致脑组织灌注氧合损害的因素非常重要。如前所述,谵妄的危险因素包括脓毒症、疾病严重程度、低灌注、机械通气等,因此积极治疗原发病、尽量减少引起谵妄的诱发因素、改善组织和脑灌注,将有利于谵妄的预防。

推荐意见21:推荐通过改善睡眠及早期活动等措施减少ICU患者谵妄的发生(强推荐,中级证据质量)。

理论依据:睡眠剥夺是ICU患者发生谵妄的因素之一,因此改善睡眠的时间及质量有助于降低谵妄的发生率。目前有3项RCT研究了耳塞对谵妄发生率的影响[285,286,287],进行荟萃分析后发现,耳塞的使用可降低谵妄的发生率(RR=0.56,95%CI=0.38~0.81,P=0.002)。进行GRADE分级后证据质量级别为中级。另外,集中进行护理及医疗干预等措施亦可以减少谵妄的发生,但证据强度较低[26]。Schweickert[288]及Needham[289]等进行RCT研究还表明,对ICU患者进行早期康复锻炼能降低谵妄的发生率及持续时间。

推荐意见22:右美托咪定可以减少ICU谵妄的发生(弱推荐,中级证据质量)。

理论依据:对于非心脏术后ICU重症患者,共有9项RCT评价了右美托咪定对谵妄发生率的影响[100,102,103,104,113,115,121,123,126],进行荟萃分析后发现,右美托咪定可以降低谵妄的发生率(RR=0.64,95%CI=0.46~0.88,P=0.006)。进行GRADE分级后证据级别为低级。另外,对于心脏术后患者的影响,共纳入了3项RCT[128,130,131],荟萃分析后发现,右美托咪定同样能明显降低谵妄的发生率(RR=0.31,95%CI=0.13~0.76,P=0.01)。进行GRADE分级后证据级别为中级。目前关于右美托咪定对谵妄治疗效果的研究较少,2016年Reade等[119]的RCT研究显示,对于躁动型谵妄患者,右美托咪定能缩短谵妄的持续时间。

还有文献显示,褪黑素也具有减少ICU谵妄发生的作用。褪黑素是一种调整睡眠节律的激素,外源性应用可以改善睡眠质量。目前有2项RCT评价了褪黑素对ICU重症患者谵妄发生率的影响[290,291],进行荟萃分析后发现,口服褪黑素可以降低谵妄的发生率(RR=0.20,95%CI=0.09~0.47,P=0.000 2)。进行GRADE分级后证据级别为中级。

推荐意见23:不建议应用氟哌啶醇、他汀类药物、多奈哌齐和抗精神病药物来预防及治疗谵妄(弱推荐,中级证据质量)。

理论依据:有8项RCT研究分析了在重症患者中应用氟哌啶醇能否有效防治谵妄[115,292,293,294,295,296,297,298],整合这8项RCT结果进行荟萃分析显示,应用氟哌啶醇并不能降低谵妄发生率(RR=0.7,95%CI=0.49~1.04,P=0.08),同时对谵妄持续时间(MD=-0.05,95%CI=-0.75~0.66,P=0.9)也无影响。进行GRADE分级后对谵妄发生率的证据质量级别为低级,对谵妄持续时间的证据质量级别为中级。

他汀类药物对谵妄预防作用的文献共3篇[299,300,301],2篇前瞻性队列研究,1篇前瞻性研究,荟萃分析后同样发现他汀类药物不能降低谵妄的发生率(OR=0.89,95%CI=0.69~1.16,P=0.14),进行GRADE分级后对谵妄发生率的证据质量级别为低级。

多哌奈齐属六氧吡啶类氧化物,是第二代特异的可逆性中枢乙酰胆碱酯酶(AChE)抑制剂,对外周AChE作用很小。本品通过抑制AChE活性,使突触间隙乙酰胆碱(ACh)的分解减慢,从而提高ACh的含量,改善阿尔茨海默病(AD)患者的认知功能。目前共有2项RCT[302,303]分析了多奈哌齐对谵妄的预防作用,进行荟萃分析显示,该药不能降低谵妄的发生率(OR=0.75,95%CI=0.30~1.87,P=0.53)。进行GRADE分级后对谵妄发生率的证据质量级别为极低级。

关于抗精神病药物对谵妄的预防及治疗作用,Girard等[295]的RCT研究显示,齐拉西酮不能降低谵妄的持续时间及病死率。Weaver等[304]的回顾性研究同样发现抗精神病药物不能减少谵妄的持续时间。但也有回顾性研究提出喹硫平能减少谵妄的持续时间[305]。Neufeld等[306]的荟萃分析纳入了19项临床研究,进行荟萃分析后指出抗精神病药物不能降低谵妄的发生率或持续时间。

3.5 镇痛镇静的并发症

问题20:镇痛镇静治疗可能会带来哪些并发症?

3.5.1 ICUAW:

炎症反应、长期深镇静、神经-肌肉阻滞剂、制动、糖皮质激素等多种因素可以导致ICUAW,神经-肌肉阻滞剂和深镇静是其中重要的因素。神经-肌肉阻滞剂通过抑制神经肌肉耦联而抑制肌肉的收缩活性,从而导致肌无力。神经-肌肉阻滞剂通常与足量的镇静药物和(或)镇痛药物联合应用。神经肌肉阻滞剂的应用不仅会导致即刻肌肉功能抑制,药物的残余效应也会导致ICUAW[307,308]。Price等[309]进行的荟萃分析入选了1项RCT研究及18项前瞻性观察性研究、共2 254例ICU患者,结果显示,在使用神经-肌肉阻滞剂的ICU患者中,ICUAW的发生率为51%,而未使用神经-肌肉阻滞剂的对照组患者中,ICUAW发生率为39%,两组间有明显差异。神经-肌肉阻滞剂与ICUAW中度相关(OR=1.25,95%CI=1.06~1.48)。神经肌肉阻滞剂的持续使用也会增加肌萎缩的风险[310]。机械通气患者通常需要使用大剂量镇痛镇静药物,这也会增加ICUAW的发生,特别是在高龄患者中[288]

积极处理原发病、尽量减少或避免引起肌无力的药物、早期康复训练、充足的营养支持等均有助于肌无力的预防及恢复。

3.5.2 循环功能抑制:

对于血流动力学不稳定、低血容量或交感兴奋性升高的患者,镇痛镇静治疗容易引发低血压。α2受体激动剂右美托咪定具有抗交感作用,可导致心动过缓和(或)低血压。因此镇痛镇静治疗期间应进行循环功能监测,根据患者的血流动力学变化调整给药速度,并适当进行液体复苏,必要时给予血管活性药物,力求维持血流动力学平稳。

3.5.3 呼吸功能抑制:

多种镇痛镇静药物都可以产生呼吸抑制,深度镇静还可以导致患者咳嗽和排痰能力减弱,影响呼吸功能恢复和气道分泌物的清除,增加肺部感染机会。因此实施镇痛镇静过程中要密切监测呼吸功能,并在病情允许的情况下尽可能及时调整为浅镇静。

3.5.4 消化功能影响:

阿片类镇痛药物可抑制肠道蠕动导致便秘和腹胀。配合应用促胃肠动力药物,联合应用非阿片类镇痛药物和新型阿片类制剂等措施能减少上述不良反应。

3.5.5 其他:

镇痛镇静后患者自主活动减少,加之疼痛感觉变弱,会导致患者较长时间不改变体位,继而容易造成压疮、深静脉血栓等并发症,因此对于镇痛镇静的重症患者应采取加强体疗、变换体位、早期活动等方式以减少上述并发症的发生。

3.6 镇痛镇静实施流程:

镇痛镇静实施流程见图2

点击查看大图
图2
镇痛镇静实施流程

注:ICU为重症医学科,NRS为数字评分表,BPS为行为疼痛量表,COPT为重症监护疼痛观察量表,RASS为Richmond躁动-镇静评分,SAS为镇静-躁动评分,CMA-ICU为ICU患者意识模糊评估法,ICDSC为重症监护谵妄筛查量表

图2
镇痛镇静实施流程
指南修订工作委员会成员

工作组成员(排名不分先后):安友仲、赵慧颖、王慧霞、吕杰、赵秀娟、周刚、郭晓夏、付春、王斌、吴昆、吕姗、刘丹、刘晓江、肖增丽、沈鹏、杜安琪、沈佳伟、杨曙光、王光杰、冀慧娟、吴培华、刘晓霞、张柳(北京大学人民医院);王洪亮(哈尔滨医科大学附属第二医院);周飞虎(解放军总医院);隆云(北京协和医院);章志丹(中国医科大学附属第一医院);陈敏英、陈娟(中山大学附属第一医院);胡波(武汉大学中南医院);杨向红(浙江省人民医院);黄晓波(四川省人民医院);高心晶(天津市第三中心医院);高岩(哈尔滨医科大学附属第一院);尹海燕(广州市红十字会医院);张丹(重庆医科大学附属第一医院);邵换璋(河南省人民医院);朱桂军(河北医科大学附属第四医院);黄伟(大连医科大学附属第一医院);徐静媛(东南大学附属中大医院);欧晓峰(四川大学华西医院);詹思延、孙凤(北京大学循证医学中心);刘建平(中医药大学循证医学中心)

指南修订专家委员会成员(按姓氏笔画):于凯江(哈尔滨医科大学附属肿瘤医院);于相友(新疆医科大学附属第一医院);马晓春(中国医科大学附属第一医院);马朋林(解放军第309医院);王春亭(山东省立医院);艾宇航(中南大学湘雅医院);刘大为(北京协和医院);安友仲(北京大学人民医院);许媛(北京清华长庚医院);李维勤(南京军区南京总医院);邱海波(东南大学附属中大医院);宋青(解放军总医院);严静(浙江医院);杨毅(东南大学附属中大医院);陈德昌(上海长征医院);周发春(重庆医科大学附属第一医院);胡振杰(河北医科大学附属第四医院);钱传云(昆明医学院第一附属医院);秦秉玉(河南省人民医院);徐磊(天津市第三中心医院);席修明(首都医科大学附属复兴医院);康焰(四川大学华西医院);管向东(中山大学附属第一医院);黎毅敏(广州医学院第一附属医院)

参考文献
[1]
中华医学会重症医学分会. 中国重症加强治疗病房患者镇痛和镇静治疗指导意见(2006) [J]. 中华外科杂志, 2006, 44 ( 17): 1158- 1166. DOI: 10.3760/j:issn:0529-5815.2006.17.003.
Society of Critical Care Medicine Chinese Medical Association. Guideline for analgesia and sedation for patients in intensive care unit, China (2006) [J]. Chin J Surg, 2006, 44 (17): 1158-1166. DOI: 10.3760/j:issn:0529-5815.2006.17.003.
[2]
BalasM, BuckinghamR, BraleyT, et al. Extending the ABCDE bundle to the post-intensive care unit setting [J]. J Gerontol Nurs, 2013, 39 ( 8): 39- 51. DOI: 10.3928/00989134-20130530-06.
[3]
BarrJ, FraserGL, PuntilloK, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit [J]. Crit Care Med, 2013, 41 ( 1): 263- 306. DOI: 10.1097/CCM.0b013e3182783b72.
[4]
VincentJL, ShehabiY, WalshTS, et al. Comfort and patient-centred care without excessive sedation: the eCASH concept [J]. Intensive Care Med, 2016, 42 ( 6): 962- 971. DOI: 10.1007/s00134-016-4297-4.
[5]
AtkinsD, BestD, BrissPA, et al. Grading quality of evidence and strength of recommendations [J]. BMJ. 2004, 328 ( 7454): 1490. DOI: 10.1136/bmj.328.7454.1490
[6]
GuyattGH, OxmanAD, VistGE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations [J]. BMJ, 2008, 336 ( 7650): 924- 926. DOI: 10.1136/bmj.39489.470347.AD.
[7]
The GRADE Working Group. GRADEpro GDT: an introduction to the system [EB/OL]. [ 2017-09-19]. http://gdt.guidelinedevelopment.org/app/help/user_guide/index.html.
[8]
GuyattGH, SchunemannHJ, DjulbegovicB, et al. Guideline panels should not GRADE good practice statements [J]. J Clin Epidemiol, 2015, 68 ( 5): 597- 600.
[9]
Anon. Pain terms: a list with definitions and notes on usage. Recommended by the IASP Subcommittee on Taxonomy [J]. Pain, 1979, 6 ( 3): 249.
[10]
PuntilloKA, MaxA, TimsitJF, et al. Determinants of procedural pain intensity in the intensive care unit. The Europain® study [J]. Am J Respir Crit Care Med, 2014, 189 ( 1): 39- 47. DOI: 10.1164/rccm.201306-1174OC.
[11]
ChanquesG, JaberS, BarbotteE, et al. Impact of systematic evaluation of pain and agitation in an intensive care unit [J]. Crit Care Med, 2006, 34 ( 6): 1691- 1699. DOI: 10.1097/01.CCM.0000218416.62457.56.
[12]
ChanquesG, SebbaneM, BarbotteE, et al. A prospective study of pain at rest: incidence and characteristics of an unrecognized symptom in surgical and trauma versus medical intensive care unit patients [J]. Anesthesiology, 2007, 107 ( 5): 858- 860. DOI: 10.1097/01.anes.0000287211.98642.51.
[13]
BattleCE, LovettS, HutchingsH. Chronic pain in survivors of critical illness: a retrospective analysis of incidence and risk factors [J]. Crit Care, 2013, 17 ( 3): R101. DOI: 10.1186/cc12746.
[14]
Perpiñá-GalvañJ, Richart-MartínezM. Scales for evaluating self-perceived anxiety levels in patients admitted to intensive care units: a review [J]. Am J Crit Care, 2009, 18 ( 6): 571- 580. DOI: 10.4037/ajcc2009682.
[15]
TateJA, Devito DabbsA, HoffmanLA, et al. Anxiety and agitation in mechanically ventilated patients [J]. Qual Health Res, 2012, 22 ( 2): 157- 173. DOI: 10.1177/1049732311421616.
[16]
FraserGL, PratoBS, RikerRR, et al. Frequency, severity, and treatment of agitation in young versus elderly patients in the ICU [J]. Pharmacotherapy, 2000, 20 ( 1): 75- 82. DOI: 10.1592/phco.20.1.75.34663.
[17]
BoykoY, JennumP, ToftP. Sleep quality and circadian rhythm disruption in the intensive care unit: a review [J]. Nat Sci Sleep, 2017, 9: 277- 284. DOI: 10.2147/NSS.S151525.
[18]
PisaniMA, FrieseRS, GehlbachBK, et al. Sleep in the intensive care unit [J]. Am J Respir Crit Care Med, 2015, 191 ( 7): 731- 738. DOI: 10.1164/rccm.201411-2099CI.
[19]
BoykoY, JennumP, NikolicM, et al. Sleep in intensive care unit: The role of environment [J]. J Crit Care, 2017, 37: 99- 105. DOI: 10.1016/j.jcrc.2016.09.005.
[20]
CookeM, ChaboyerW, SchluterP, et al. The effect of music on discomfort experienced by intensive care unit patients during turning: a randomized cross-over study [J]. Int J Nurs Pract, 2010, 16 ( 2): 125- 131. DOI: 10.1111/j.1440-172X.2010.01819.x.
[21]
GorjiHM, NesamiBM, AyyasiM, et al. Comparison of ice packs application and relaxation therapy in pain reduction during chest tube removal following cardiac surgery [J]. N Am J Med Sci, 2014, 6 ( 1): 19- 24. DOI: 10.4103/1947-2714.125857.
[22]
SandersRD, MazeM. Contribution of sedative-hypnotic agents to delirium via modulation of the sleep pathway [J]. Can J Anaesth, 2011, 58 ( 2): 149- 156. DOI: 10.1007/s12630-010-9421-2.
[23]
WeinhouseGL, SchwabRJ, WatsonPL, et al. Bench-to-bedside review: delirium in ICU patients - importance of sleep deprivation [J]. Crit Care, 2009, 13 ( 6): 234. DOI: 10.1186/cc8131.
[24]
Figueroa-RamosMI, Arroyo-NovoaCM, LeeKA, et al. Sleep and delirium in ICU patients: a review of mechanisms and manifestations [J]. Intensive Care Med, 2009, 35 ( 5): 781- 795. DOI: 10.1007/s00134-009-1397-4.
[25]
LittonE, CarnegieV, ElliottR, et al. The Efficacy of earplugs as a sleep hygiene strategy for reducing delirium in the ICU: a systematic review and Meta-analysis [J]. Crit Care Med, 2016, 44 ( 5): 992- 999. DOI: 10.1097/CCM.0000000000001557.
[26]
HuRF, JiangXY, ChenJ, et al. Non-pharmacological interventions for sleep promotion in the intensive care unit [J]. Cochrane Database Syst Rev, 2015 ( 10): CD008808. DOI: 10.1002/14651858.CD008808.pub2.
[27]
AkanselN, KaymakçiS. Effects of intensive care unit noise on patients: a study on coronary artery bypass graft surgery patients [J]. J Clin Nurs, 2008, 17 ( 12): 1581- 1590. DOI: 10.1111/j.1365-2702.2007.02144.x.
[28]
VoigtLP, ReynoldsK, MehryarM, et al. Monitoring sound and light continuously in an intensive care unit patient room: a pilot study [J]. J Crit Care, 2017, 39: 36- 39. DOI: 10.1016/j.jcrc.2016.12.020.
[29]
吴妮慧吴金球. 重症监护病房噪音污染现状及防护对策[J]. 齐鲁护理杂志, 2013, 19 ( 23): 54- 56. DOI: 10.3969/j.issn.1006-7256.2013.23.025.
WuNH, WuJQ. Current situation of noise pollution in intensive care unit and countermeasures [J]. J Qilu Nurs, 2013, 19 (23): 54-56. DOI: 10.3969/j.issn.1006-7256.2013.23.025.
[30]
RyuMJ, ParkJS, ParkH. Effect of sleep-inducing music on sleep in persons with percutaneous transluminal coronary angiography in the cardiac care unit [J]. J Clin Nurs, 2012, 21 ( 5-6): 728- 735. DOI: 10.1111/j.1365-2702.2011.03876.x.
[31]
BradtJ, DileoC. Music interventions for mechanically ventilated patients [J]. Cochrane Database Syst Rev, 2014 ( 12): CD006902. DOI: 10.1002/14651858.CD006902.pub3.
[32]
RahmaniA, NaseriM, SalareeMM, et al. Comparing the effect of foot reflexology massage, foot bath and their combination on quality of sleep in patients with acute coronary syndrome [J]. J Caring Sci, 2016, 5 ( 4): 299- 306. DOI: 10.15171/jcs.2016.031.
[33]
RobledaG, Roche-CampoF, Sendra, et al. Fentanyl as pre-emptive treatment of pain associated with turning mechanically ventilated patients: a randomized controlled feasibility study [J]. Intensive Care Med, 2016, 42 ( 2): 183- 191. DOI: 10.1007/s00134-015-4112-7.
[34]
de JongA, MolinariN, de LattreS, et al. Decreasing severe pain and serious adverse events while moving intensive care unit patients: a prospective interventional study (the NURSE-DO project) [J]. Crit Care, 2013, 17 ( 2): R74. DOI: 10.1186/cc12683.
[35]
JaberS, BahloulH, GuétinS, et al. Effects of music therapy in intensive care unit without sedation in weaning patients versus non-ventilated patients [J]. Ann Fr Anesth Reanim, 2007, 26 ( 1): 30- 38. DOI: 10.1016/j.annfar.2006.09.002.
[36]
FriesnerSA, CurryDM, ModdemanGR. Comparison of two pain-management strategies during chest tube removal: relaxation exercise with opioids and opioids alone [J]. Heart Lung, 2006, 35 ( 4): 269- 276. DOI: 10.1016/j.hrtlng.2005.10.005.
[37]
SaulsJ. The use of ice for pain associated with chest tube removal [J]. Pain Manag Nurs, 2002, 3 ( 2): 44- 52.
[38]
DemirY, KhorshidL. The effect of cold application in combination with standard analgesic administration on pain and anxiety during chest tube removal: a single-blinded, randomized, double-controlled study [J]. Pain Manag Nurs, 2010, 11 ( 3): 186- 196. DOI: 10.1016/j.pmn.2009.09.002.
[39]
GeorgiouE, HadjibalassiM, LambrinouE, et al. The impact of pain assessment on critically ill patients' outcomes: a systematic review [J]. Biomed Res Int, 2015, 2015: 503830. DOI: 10.1155/2015/503830.
[40]
PayenJF, BossonJL, ChanquesG, et al. Pain assessment is associated with decreased duration of mechanical ventilation in the intensive care unit: a post Hoc analysis of the DOLOREA study [J]. Anesthesiology, 2009, 111 ( 6): 1308- 1316. DOI: 10.1097/ALN.0b013e3181c0d4f0.
[41]
MeehanDA, McRaeME, RourkeDA, et al. Analgesic administration, pain intensity, and patient satisfaction in cardiac surgical patients [J]. Am J Crit Care, 1995, 4 ( 6): 435- 442.
[42]
RoseL, HaslamL, DaleC, et al. Behavioral pain assessment tool for critically ill adults unable to self-report pain [J]. Am J Crit Care, 2013, 22 ( 3): 246- 255. DOI: 10.4037/ajcc2013200.
[43]
ArbourC, GélinasC, MichaudC. Impact of the implementation of the critical: Care Pain Observation Tool (CPOT) on pain management and clinical outcomes in mechanically ventilated trauma intensive care unit patients: a pilot study [J]. Int J Trauma Nurs, 2011, 18 ( 1): 52- 60. DOI: 10.1097/JTN.0b013e3181ff2675.
[44]
GélinasC, ArbourC, MichaudC, et al. Implementation of the critical-care pain observation tool on pain assessment/management nursing practices in an intensive care unit with nonverbal critically ill adults: a before and after study [J]. Int J Nurs Stud, 2011, 48 ( 12): 1495- 1504. DOI: 10.1016/j.ijnurstu.2011.03.012.
[45]
Topolovec-VranicJ, CanzianS, InnisJ, et al. Patient satisfaction and documentation of pain assessments and management after implementing the adult nonverbal pain scale [J]. Am J Crit Care, 2010, 19 ( 4): 345- 354; quiz 355. DOI: 10.4037/ajcc2010247.
[46]
VoigtL, PaiceJA, PouliotJ. Standardized pain flowsheet: impact on patient-reported pain experiences after cardiovascular surgery [J]. Am J Crit Care, 1995, 4 ( 4): 308- 313.
[47]
RadtkeFM, HeymannA, FranckM, et al. How to implement monitoring tools for sedation, pain and delirium in the intensive care unit: an experimental cohort study [J]. Intensive Care Med, 2012, 38 ( 12): 1974- 1981. DOI: 10.1007/s00134-012-2658-1.
[48]
RahuMA, GrapMJ, FergusonP, et al. Validity and sensitivity of 6 pain scales in critically ill, intubated adults [J]. Am J Crit Care, 2015, 24 ( 6): 514- 523. DOI: 10.4037/ajcc2015832.
[49]
ChanquesG, PohlmanA, KressJP, et al. Psychometric comparison of three behavioural scales for the assessment of pain in critically ill patients unable to self-report [J]. Crit Care, 2014, 18 ( 5): R160. DOI: 10.1186/cc14000.
[50]
AhlersSJ, van der VeenAM, van DijkM, et al. The use of the Behavioral Pain Scale to assess pain in conscious sedated patients [J]. Anesth Analg, 2010, 110 ( 1): 127- 133. DOI: 10.1213/ANE.0b013e3181c3119e.
[51]
LindeSM, BadgerJM, MachanJT, et al. Reevaluation of the critical-care pain observation tool in intubated adults after cardiac surgery [J]. Am J Crit Care, 2013, 22 ( 6): 491- 497. DOI: 10.4037/ajcc2013700.
[52]
Topolovec-VranicJ, GelinasC, LiY, et al. Validation and evaluation of two observational pain assessment tools in a trauma and neurosurgical intensive care unit [J]. Pain Res Manag, 2013, 18 ( 6): e107- 114.
[53]
KanjiS, MacPheeH, SinghA, et al. Validation of the critical care pain observation tool in critically ill patients with delirium: a prospective cohort study [J]. Crit Care Med, 2016, 44 ( 5): 943- 947. DOI: 10.1097/CCM.0000000000001522.
[54]
VarndellW, FryM, ElliottD. A systematic review of observational pain assessment instruments for use with nonverbal intubated critically ill adult patients in the emergency department: an assessment of their suitability and psychometric properties [J]. J Clin Nurs, 2017, 26 ( 1-2): 7- 32. DOI: 10.1111/jocn.13594.
[55]
ErstadBL, PuntilloK, GilbertHC, et al. Pain management principles in the critically ill [J]. Chest, 2009, 135 ( 4): 1075- 1086. DOI: 10.1378/chest.08-2264.
[56]
RichmanPS, BaramD, VarelaM, et al. Sedation during mechanical ventilation: a trial of benzodiazepine and opiate in combination [J]. Crit Care Med, 2006, 34 ( 5): 1395- 1401. DOI: 10.1097/01.CCM.0000215454.50964.F8.
[57]
RozendaalFW, SpronkPE, SnellenFF, et al. Remifentanil-propofol analgo-sedation shortens duration of ventilation and length of ICU stay compared to a conventional regimen: a centre randomised, cross-over, open-label study in the Netherlands [J]. Intensive Care Med, 2009, 35 ( 2): 291- 298. DOI: 10.1007/s00134-008-1328-9.
[58]
ContiG, ArcangeliA, AntonelliM, et al. Sedation with sufentanil in patients receiving pressure support ventilation has no effects on respiration: a pilot study [J]. Can J Anaesth, 2004, 51 ( 5): 494- 499. DOI: 10.1007/BF03018315.
[59]
MullerL, ChanquesG, BourgauxC, et al. Impact of the use of propofol remifentanil goal-directed sedation adapted by nurses on the time to extubation in mechanically ventilated ICU patients: the experience of a French ICU [J]. Ann Fr Anesth Reanim, 2008, 27 ( 6): 481. e1- 481. e8. DOI: 10.1016/j.annfar.2008.04.022.
[60]
王书林. 应用舒芬太尼联合丙泊酚为ICU机械通气患者进行镇痛镇静的效果观察[J]. 当代医药论丛, 2014, 13 ( 12): 171- 172.
WangSL. Observation on the effect of sufentanil combined with propofol for analgesia and sedation in ICU patients with mechanical ventilation [J]. Contemporary Med Forum, 2014, 13 (12): 171-172.
[61]
DahabaAA, GrabnerT, RehakPH, et al. Remifentanil versus morphine analgesia and sedation for mechanically ventilated critically ill patients: a randomized double blind study [J]. Anesthesiology, 2004, 101 ( 3): 640- 646.
[62]
KarabinisA, MandragosK, StergiopoulosS, et al. Safety and efficacy of analgesia-based sedation with remifentanil versus standard hypnotic-based regimens in intensive care unit patients with brain injuries: a randomised, controlled trial [ISRCTN50308308] [J]. Crit Care, 2004, 8 ( 4): R268- 280. DOI: 10.1186/cc2896.
[63]
刘坤彬王东浩马赟,. 瑞芬太尼在重症监护病房机械通气患者镇痛镇静中的应用研究 [J]. 中华危重病急救医学, 2013, 25 ( 3): 167- 170. DOI: 10.3760/cma.j.issn.2095-4352.2013.03.012.
LiuKB, WangDH, MaY, et al. Remifentanil for analgesia and sedation in mechanically ventilated patients in intensive care unit [J]. Chin Crit Care Med, 2013, 25 (3): 167-170. DOI: 10.3760/cma.j.issn.2095-4352.2013.03.012.
[64]
MuellejansB, MattheyT, ScholppJ, et al. Sedation in the intensive care unit with remifentanil/propofol versus midazolam/fentanyl: a randomised, open-label, pharmacoeconomic trial [J]. Crit Care, 2006, 10 ( 3): R91. DOI: 10.1186/cc4939.
[65]
SpiesC, MacguillM, HeymannA, et al. A prospective, randomized, double-blind, multicenter study comparing remifentanil with fentanyl in mechanically ventilated patients [J]. Intensive Care Med, 2011, 37 ( 3): 469- 476. DOI: 10.1007/s00134-010-2100-5.
[66]
燕琳张传汉. 氢吗啡酮的药理作用及临床研究进展[J]. 中国疼痛医学杂志, 2015, 21 ( 9): 701- 703. DOI: 10.3969/j.issn.1006-9852.2015.09.014.
YanL, ZhangCH. Pharmacological effects and clinical research progress of hydromorphone [J]. Chin J Pain Med, 2015, 21 (9): 701-703. DOI: 10.3969/j.issn.1006-9852.2015.09.014.
[67]
黄宇光黄文起李刚,. 酒石酸布托啡诺镇痛专家共识[J]. 临床麻醉学杂志, 2011, 27 ( 10): 1028- 1029.
HuangYG, HuangWQ, LiG, et al. Expert consensus on butorphanol tartrate analgesia [J]. J Clin Anesthesiol, 2011, 27 (10): 1028-1029.
[68]
AvellanedaC, GómezA, MartosF, et al. The effect of a single intravenous dose of metamizol 2 g, ketorolac 30 mg and propacetamol 1 g on haemodynamic parameters and postoperative pain after heart surgery [J]. Eur J Anaesthesiol, 2000, 17 ( 2): 85- 90.
[69]
PiperSN, BeschmannR, MengistuA, et al. Assessment of recovery, dreaming, hemodynamics, and satisfaction in postcardiac surgery patients receiving supplementary propofol sedation with S(+)-ketamine [J]. Minerva Anestesiol, 2009, 75 ( 6): 363- 373.
[70]
TawficQA, FarisAS, KausalyaR. The role of a low-dose ketamine-midazolam regimen in the management of severe painful crisis in patients with sickle cell disease [J]. J Pain Symptom Manage, 2014, 47 ( 2): 334- 340. DOI: 10.1016/j.jpainsymman.2013.03.012.
[71]
SchmittnerMD, VajkoczySL, HornP, et al. Effects of fentanyl and S(+)-ketamine on cerebral hemodynamics, gastrointestinal motility, and need of vasopressors in patients with intracranial pathologies: a pilot study [J]. J Neurosurg Anesthesiol, 2007, 19 ( 4): 257- 262. DOI: 10.1097/ANA.0b013e31811f3feb.
[72]
KouchekM, MansouriB, MokhtariM, et al. A comparative study of intravenous paracetamol and fentanyl for pain management in ICU [J]. Iran J Pharm Res, 2013, 12 ( 1): 193- 198.
[73]
JelacicS, BollagL, BowdleA, et al. Intravenous acetaminophen as an adjunct analgesic in cardiac surgery reduces opioid consumption but not opioid-related adverse effects: a randomized controlled trial [J]. J Cardiothorac Vasc Anesth, 2016, 30 ( 4): 997- 1004. DOI: 10.1053/j.jvca.2016.02.010.
[74]
PetterssonPH, JakobssonJ, OwallA. Intravenous acetaminophen reduced the use of opioids compared with oral administration after coronary artery bypass graftin [J]. J Cardiothorac Vasc Anesth, 2005, 19 ( 3): 306- 309.
[75]
ChanquesG, SebbaneM, ConstantinJM, et al. Analgesic efficacy and haemodynamic effects of nefopam in critically ill patients [J]. Br J Anaesth, 2011, 106 ( 3): 336- 343. DOI: 10.1093/bja/aeq375.
[76]
KimK, KimWJ, ChoiDK, et al. The analgesic efficacy and safety of nefopam in patient-controlled analgesia after cardiac surgery: A randomized, double-blind, prospective study [J]. J Int Med Res, 2014, 42 ( 3): 684- 692. DOI: 10.1177/0300060514525351.
[77]
SoltanzadehM, EbadA, PipelzadehMR, et al. Gabapentin may relieve post-coronary artery bypass graft pain: a double blind randomized clinical trial [J]. Iran Cardiovasc Res J, 2011, 5 ( 3): 79- 82.
[78]
ZimmermannAR, KibblewhiteD, SleighJ. Comparison of morphine/droperidol and tramadol/droperidol mixture for patient controlled analgesia (PCA) after cardiac surgery: a prospective, randomised, double-blind study [J]. Acute Pain, 2002, 4 ( 2): 65- 69. DOI: 10.1016/S1366-0071(02)00025-6.
[79]
PandeyCK, BoseN, GargG, et al. Gabapentin for the treatment of pain in Guillain-Barré syndrome: a double-blinded, placebo-controlled, crossover study [J]. Anesth Analg, 2002, 95 ( 6): 1719- 1723.
[80]
PandeyCK, RazaM, TripathiM, et al. The comparative evaluation of gabapentin and carbamazepine for pain management in Guillain-Barré syndrome patients in the intensive care unit [J]. Anesth Analg, 2005, 101 ( 1): 220-225, table of contents. DOI: 10.1213/01.ANE.0000152186.89020.36.
[81]
TripathiM, KaushikS. Carbamezapine for pain management in Guillain-Barré syndrome patients in the intensive care unit [J]. Crit Care Med, 2000, 28 ( 3): 655- 658.
[82]
GuillouN, TanguyM, SeguinP, et al. The effects of small-dose ketamine on morphine consumption in surgical intensive care unit patients after major abdominal surgery [J]. Anesth Analg, 2003, 97 ( 3): 843- 847. DOI: 10.1213/01.ANE.0000075837.67275.36.
[83]
MemisD, InalMT, KavalciG, et al. Intravenous paracetamol reduced the use of opioids, extubation time, and opioid-related adverse effects after major surgery in intensive care unit [J]. J Crit Care, 2010, 25 ( 3): 458- 462. DOI: 10.1016/j.jcrc.2009.12.012.
[84]
PiperSN, BeschmannRB, MengistuA, et al. Postoperative analgosedation with S(+)-ketamine decreases the incidences of postanesthetic shivering and nausea and vomiting after cardiac surgery [J]. Med Sci Monit, 2008, 14 ( 12): PI59- 65.
[85]
BucknallTK, ManiasE, PresneillJJ. A randomized trial of protocol-directed sedation management for mechanical ventilation in an Australian intensive care unit [J]. Crit Care Med, 2008, 36 ( 5): 1444- 1450. DOI: 10.1097/CCM.0b013e318168f82d.
[86]
BrookAD, AhrensTS, SchaiffR, et al. Effect of a nursing-implemented sedation protocol on the duration of mechanical ventilation [J]. Crit Care Med, 1999, 27 ( 12): 2609- 2615.
[87]
MansouriP, JavadpourS, ZandF, et al. Implementation of a protocol for integrated management of pain, agitation, and delirium can improve clinical outcomes in the intensive care unit: a randomized clinical trial [J]. J Crit Care, 2013, 28 ( 6): 918- 922. DOI: 10.1016/j.jcrc.2013.06.019.
[88]
ShehabiY, BellomoR, ReadeMC, et al. Early goal-directed sedation versus standard sedation in mechanically ventilated critically ill patients: a pilot study [J]. Crit Care Med, 2013, 41 ( 8): 1983- 1991. DOI: 10.1097/CCM.0b013e31828a437d.
[89]
TreggiariMM, RomandJA, YanezND, et al. Randomized trial of light versus deep sedation on mental health after critical illness [J]. Crit Care Med, 2009, 37 ( 9): 2527- 2534. DOI: 10.1097/CCM.0b013e3181a5689f.
[90]
AnifantakiS, PrinianakisG, VitsaksakiE, et al. Daily interruption of sedative infusions in an adult medical-surgical intensive care unit: randomized controlled trial [J]. J Adv Nurs, 2009, 65 ( 5): 1054- 1060.
[91]
MehtaS, BurryL, Martinez-MottaJC, et al. A randomized trial of daily awakening in critically ill patients managed with a sedation protocol: a pilot trial [J]. Crit Care Med, 2008, 36 ( 7): 2092- 2099. DOI: 10.1097/CCM.0b013e31817bff85.
[92]
Nassar JuniorAP, ParkM. Daily sedative interruption versus intermittent sedation in mechanically ventilated critically ill patients: a randomized trial [J]. Ann Intensive Care, 2014, 4: 14. DOI: 10.1186/2110-5820-4-14.
[93]
WeisbrodtL, McKinleyS, MarshallAP, et al. Daily interruption of sedation in patients receiving mechanical ventilation [J]. Am J Crit Care, 2011, 20 ( 4): e90- 98. DOI: 10.4037/ajcc2011415.
[94]
YiliazC, KelebekGN, OzdemirN, et al. The effect of nursing-implemented sedation on the duration of mechanical ventilation in the ICU [J]. Ulus Travma Acil Cerrahi Derg, 2010, 16 ( 6): 521- 526.
[95]
KressJP, PohlmanAS, O'ConnorMF, et al. Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation [J]. N Engl J Med, 2000, 342 ( 20): 1471- 1477. DOI: 10.1056/NEJM200005183422002.
[96]
GirardTD, KressJP, FuchsBD, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (awakening and breathing controlled trial): a randomised controlled trial [J]. Lancet, 2008, 371 ( 9607): 126- 134. DOI: 10.1016/S0140-6736(08)60105-1.
[97]
de WitM, GenningsC, JenveyWI, et al. Randomized trial comparing daily interruption of sedation and nursing-implemented sedation algorithm in medical intensive care unit patients [J]. Crit Care, 2008, 12 ( 3): R70. DOI: 10.1186/cc6908.
[98]
MehtaS, BurryL, CookD, et al. Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol: a randomized controlled trial [J]. JAMA, 2012, 308 ( 19): 1985- 1992.
[99]
CarsonSS, KressJP, RodgersJE, et al. A randomized trial of intermittent lorazepam versus propofol with daily interruption in mechanically ventilated patients [J]. Crit Care Med, 2006, 34 ( 5): 1326- 1332. DOI: 10.1097/01.CCM.0000215513.63207.7F.
[100]
JakobSM, RuokonenE, GroundsRM, et al. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials [J]. JAMA, 2012, 307 ( 11): 1151- 1160. DOI: 10.1001/jama.2012.304.
[101]
LuX, LiJ, LiT, et al. Clinical study of midazolam sequential with dexmedetomidine for agitated patients undergoing weaning to implement light sedation in intensive care unit [J]. Chin J Traumatol, 2016, 19 ( 2): 94- 96. DOI: 10.1016/j.cjtee.2015.09.007.
[102]
MacLarenR, PreslaskiCR, MuellerSW, et al. A randomized, double-blind pilot study of dexmedetomidine versus midazolam for intensive care unit sedation: patient recall of their experiences and short-term psychological outcomes [J]. J Intensive Care Med, 2015, 30 ( 3): 167- 175. DOI: 10.1177/0885066613510874.
[103]
PandharipandePP, PunBT, HerrDL, et al. Effect of sedation with dexmedetomidine vs lorazepam on acute brain dysfunction in mechanically ventilated patients: the MENDS randomized controlled trial [J]. JAMA, 2007, 298 ( 22): 2644- 2653. DOI: 10.1001/jama.298.22.2644.
[104]
RikerRR, ShehabiY, BokeschPM, et al. Dexmedetomidine vs midazolam for sedation of critically ill patients: a randomized trial [J]. JAMA, 2009, 301 ( 5): 489- 499. DOI: 10.1001/jama.2009.56.
[105]
WeinbroumAA, HalpernP, RudickV, et al. Midazolam versus propofol for long-term sedation in the ICU: a randomized prospective comparison [J]. Intensive Care Med, 1997, 23 ( 12): 1258- 1263.
[106]
ZhouY, JinX, KangY, et al. Midazolam and propofol used alone or sequentially for long-term sedation in critically ill, mechanically ventilated patients: a prospective, randomized study [J]. Crit Care, 2014, 18 ( 3): R122. DOI: 10.1186/cc13922.
[107]
郭丰王琦严春燕,. 不同镇静方案在感染性休克患者中的临床应用观察[J]. 中华医学杂志, 2016, 96 ( 22): 1758- 1761. DOI: 10.3760/cma.j.issn.0376-2491.2016.22.010.
GuoF, WangQ, YanCY, et al. Clinical application of different sedation regimen in patients with septic shock [J]. Natl Med J Chin, 2016, 96 (22): 1758-1761. DOI: 10.3760/cma.j.issn.0376-2491.2016.22.010.
[108]
宋瑞霞李俊艳董晨明,. 右美托咪定在ICU机械通气集束化治疗中的临床应用研究[J]. 中华危重病急救医学, 2015, 27 ( 10): 836- 840. DOI: 10.3760/cma.j.issn.2095-4352.2015.10.011.
SongRX, LiJY, DongCM, et al. A study of using dexmedetomidine in ventilator bundle treatment in an ICU [J]. Chin Crit Care Med, 2015, 27 (10): 836-840. DOI: 10.3760/cma.j.issn.2095-4352.2015.10.011.
[109]
ChenJ, ZhouJQ, ChenZF, et al. Efficacy and safety of dexmedetomidine versus propofol for the sedation of tube-retention after oral maxillofacial surgery [J]. J Oral Maxillofac Surg, 2014, 72 ( 2): 285. e1- 7. DOI: 10.1016/j.joms.2013.10.006.
[110]
DevlinJW, Al-QadheebNS, ChiA, et al. Efficacy and safety of early dexmedetomidine during noninvasive ventilation for patients with acute respiratory failure: a randomized, double-blind, placebo-controlled pilot study [J]. Chest, 2014, 145 ( 6): 1204- 1212. DOI: 10.1378/chest.13-1448.
[111]
ElbaradieS, El MahalawyFH, SolymanAH. Dexmedetomidine vs. propofol for short-term sedation of postoperative mechanically ventilated patients [J]. J Egypt Natl Canc Inst, 2004, 16 ( 3): 153- 158.
[112]
EsmaogluA, UlgeyA, AkinA, et al. Comparison between dexmedetomidine and midazolam for sedation of eclampsia patients in the intensive care unit [J]. J Crit Care, 2009, 24 ( 4): 551- 555. DOI: 10.1016/j.jcrc.2009.02.001.
[113]
AbdelgalelEF. Dexmedetomidine versus haloperidol for prevention of delirium during non-invasive mechanical ventilation [J]. Egyptian J Anaesth, 2016, 32 ( 4): 473- 481. DOI: 10.1016/j.egja.2016.05.008.
[114]
GuptaS, SinghD, SoodD, et al. Role of dexmedetomidine in early extubation of the intensive care unit patients [J]. J Anaesthesiol Clin Pharmacol, 2015, 31 ( 1): 92- 98. DOI: 10.4103/0970-9185.150554.
[115]
HuangZ, ChenYS, YangZL, et al. Dexmedetomidine versus midazolam for the sedation of patients with non-invasive ventilation failure [J]. Intern Med, 2012, 51 ( 17): 2299- 2305. DOI: 10.2169/internalmedicine.51.7810.
[116]
KawazoeY, MiyamotoK, MorimotoT, et al. Effect of dexmedetomidine on mortality and ventilator-free days in patients requiring mechanical ventilation with sepsis: a randomized clinical trial [J]. JAMA, 2017, 317 ( 13): 1321- 1328. DOI: 10.1001/jama.2017.2088.
[117]
MartinE, RamsayG, MantzJ, et al. The role of the alpha2-adrenoceptor agonist dexmedetomidine in postsurgical sedation in the intensive care unit [J]. J Intensive Care Med, 2003, 18 ( 1): 29- 41. DOI: 10.1177/0885066602239122.
[118]
MemişD, KargiM, SutN. Effects of propofol and dexmedetomidine on indocyanine green elimination assessed with LIMON to patients with early septic shock: a pilot study [J]. J Crit Care, 2009, 24 ( 4): 603- 608. DOI: 10.1016/j.jcrc.2008.10.005.
[119]
ReadeMC, EastwoodGM, BellomoR, et al. Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium: a randomized clinical trial [J]. JAMA, 2016, 315 ( 14): 1460- 1468. DOI: 10.1001/jama.2016.2707.
[120]
ReadeMC, O'SullivanK, BatesS, et al. Dexmedetomidine vs. haloperidol in delirious, agitated, intubated patients: a randomised open-label trial [J]. Crit Care, 2009, 13 ( 3): R75. DOI: 10.1186/cc7890.
[121]
RuokonenE, ParviainenI, JakobSM, et al. Dexmedetomidine versus propofol/midazolam for long-term sedation during mechanical ventilation [J]. Intensive Care Med, 2009, 35 ( 2): 282- 290. DOI: 10.1007/s00134-008-1296-0.
[122]
SrivastavaVK, AgrawalS, KumarS, et al. Comparison of dexmedetomidine, propofol and midazolam for short-term sedation in postoperatively mechanically ventilated neurosurgical patients [J]. J Clin Diagn Res, 2014, 8 ( 9): GC04- 07. DOI: 10.7860/JCDR/2014/8797.4817.
[123]
SuX, MengZT, WuXH, et al. Dexmedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomised, double-blind, placebo-controlled trial [J]. Lancet, 2016, 388 ( 10054): 1893- 1902. DOI: 10.1016/S0140-6736(16)30580-3.
[124]
TasdoganM, MemisD, SutN, et al. Results of a pilot study on the effects of propofol and dexmedetomidine on inflammatory responses and intraabdominal pressure in severe sepsis [J]. J Clin Anesth, 2009, 21 ( 6): 394- 400. DOI: 10.1016/j.jclinane.2008.10.010.
[125]
TeraoY, IchinomiyaT, HigashijimaU, et al. Comparison between propofol and dexmedetomidine in postoperative sedation after extensive cervical spine surgery [J]. J Anesth, 2012, 26 ( 2): 179- 186. DOI: 10.1007/s00540-011-1300-7.
[126]
黄芳王俊杨新静,. 右美托咪定在老年患者外科术后机械通气中的镇静效果分析[J]. 中华医学杂志, 2014, 94 ( 41): 3211- 3215. DOI: 10.3760/cma.j.issn.0376-2491.2014.41.003.
HuangF, WangJ, YangXJ, et al. Sedative effects of dexmedetomidine in post-operative elder patients on mechanical ventilation [J]. Natl Med J Chin, 2014, 94 (41): 3211-3215. DOI: 10.3760/cma.j.issn.0376-2491.2014.41.003.
[127]
Abd AzizN, ChueMC, YongCY, et al. Efficacy and safety of dexmedetomidine versus morphine in post-operative cardiac surgery patients [J]. Int J Clin Pharm, 2011, 33 ( 2): 150- 154. DOI: 10.1007/s11096-011-9480-7.
[128]
DjaianiG, SilvertonN, FedorkoL, et al. Dexmedetomidine versus propofol sedation reduces delirium after cardiac surgery: a randomized controlled trial [J]. Anesthesiology, 2016, 124 ( 2): 362- 368. DOI: 10.1097/ALN.0000000000000951.
[129]
KadamSV, TailorKB, KulkarniS, et al. Effect of dexmeditomidine on postoperative junctional ectopic tachycardia after complete surgical repair of tetralogy of Fallot: a prospective randomized controlled study [J]. Ann Card Anaesth, 2015, 18 ( 3): 323- 328. DOI: 10.4103/0971-9784.159801.
[130]
MaldonadoJR, WysongA, van der StarrePJ, et al. Dexme-detomidine and the reduction of postoperative delirium after cardiac surgery [J]. Psychosomatics, 2009, 50 ( 3): 206- 217. DOI: 10.1176/appi.psy.50.3.206.
[131]
ShehabiY, GrantP, WolfendenH, et al. Prevalence of delirium with dexmedetomidine compared with morphine based therapy after cardiac surgery: a randomized controlled trial (DEXmedetomidine COmpared to Morphine: DEXCOM Study) [J]. Anesthesiology, 2009, 111 ( 5): 1075- 1084. DOI: 10.1097/ALN.0b013e3181b6a783.
[132]
ForelJM, RochA, MarinV, et al. Neuromuscular blocking agents decrease inflammatory response in patients presenting with acute respiratory distress syndrome [J]. Crit Care Med, 2006, 34 ( 11): 2749- 2757. DOI: 10.1097/01.CCM.0000239435.87433.0D.
[133]
GainnierM, RochA, ForelJM, et al. Effect of neuromuscular blocking agents on gas exchange in patients presenting with acute respiratory distress syndrome [J]. Crit Care Med, 2004, 32 ( 1): 113- 119. DOI: 10.1097/01.CCM.0000104114.72614.BC.
[134]
PapazianL, ForelJM, GacouinA, et al. Neuromuscular blockers in early acute respiratory distress syndrome [J]. N Engl J Med, 2010, 363 ( 12): 1107- 1116. DOI: 10.1056/NEJMoa1005372.
[135]
NetoAS, PereiraVG, EspósitoDC, et al. Neuromuscular blocking agents in patients with acute respiratory distress syndrome: a summary of the current evidence from three randomized controlled trials [J]. Ann Intensive Care, 2012, 2 ( 1): 33. DOI: 10.1186/2110-5820-2-33.
[136]
HraiechS, YoshidaT, PapazianL. Balancing neuromuscular blockade versus preserved muscle activity [J]. Curr Opin Crit Care, 2015, 21 ( 1): 26- 33. DOI: 10.1097/MCC.0000000000000175.
[137]
MurrayMJ, DeBlockH, ErstadB, et al. Clinical practice guidelines for sustained neuromuscular blockade in the adult critically ill patient [J]. Crit Care Med, 2016, 44 ( 11): 2079- 2103. DOI: 10.1097/CCM.0000000000002027.
[138]
SchweickertWD, HallJ. ICU-acquired weakness [J]. Chest, 2007, 131 ( 5): 1541- 1549. DOI: 10.1378/chest.06-2065.
[139]
RassinM, SruyahR, KahalonA, et al. "Between the fixed and the changing": examining and comparing reliability and validity of 3 sedation-agitation measuring scales [J]. Dimens Crit Care Nurs, 2007, 26 ( 2): 76- 82.
[140]
SesslerCN, GosnellMS, GrapMJ, et al. The Richmond agitation-sedation scale: validity and reliability in adult intensive care unit patients [J]. Am J Respir Crit Care Med, 2002, 166 ( 10): 1338- 1344. DOI: 10.1164/rccm.2107138.
[141]
RobinsonBR, BerubeM, BarrJ, et al. Psychometric analysis of subjective sedation scales in critically ill adults [J]. Crit Care Med, 2013, 41 ( 9 Suppl 1): S16- 29. DOI: 10.1097/CCM.0b013e3182a16879.
[142]
Nassar JuniorAP, Pires NetoRC, de FigueiredoWB, et al. Validity, reliability and applicability of Portuguese versions of sedation-agitation scales among critically ill patients [J]. Sao Paulo Med J, 2008, 126 ( 4): 215- 219. DOI: 10.1590/S1516-31802008000400003.
[143]
KhanBA, GuzmanO, CampbellNL, et al. Comparison and agreement between the Richmond Agitation-Sedation Scale and the Riker Sedation-Agitation Scale in evaluating patients' eligibility for delirium assessment in the ICU [J]. Chest, 2012, 142 ( 1): 48- 54. DOI :10.1378/chest.11-2100.
[144]
LuCH, ManKM, OuyangHY, et al. Composite auditory evoked potential index versus bispectral index to estimate the level of sedation in paralyzed critically ill patients: a prospective observational study [J]. Anesth Analg, 2008, 107 ( 4): 1290- 1294. DOI: 10.1213/ane.0b013e31818061ae.
[145]
AdesanyaAO, RoseroE, WyrickC, et al. Assessing the predictive value of the bispectral index vs patient state index on clinical assessment of sedation in postoperative cardiac surgery patients [J]. J Crit Care, 2009, 24 ( 3): 322- 328. DOI: 10.1016/j.jcrc.2008.11.004.
[146]
ArbourR. Impact of bispectral index monitoring on sedation and outcomes in critically ill adults: a case series [J]. Crit Care Nurs Clin North Am, 2006, 18 ( 2): 227-241, xi. DOI: 10.1016/j.ccell.2006.02.001.
[147]
ArbourR, WaterhouseJ, SeckelMA, et al. Correlation between the Sedation-Agitation Scale and the Bispectral Index in ventilated patients in the intensive care unit [J]. Heart Lung, 2009, 38 ( 4): 336- 345. DOI: 10.1016/j.hrtlng.2008.10.010.
[148]
ConsalesG, ChelazziC, RinaldiS, et al. Bispectral Index compared to Ramsay score for sedation monitoring in intensive care units [J]. Minerva Anestesiol, 2006, 72 ( 5): 329- 336.
[149]
de WitM, EpsteinSK. Administration of sedatives and level of sedation: comparative evaluation via the Sedation-Agitation Scale and the Bispectral Index [J]. Am J Crit Care, 2003, 12 ( 4): 343- 348.
[150]
DeogaonkarA, GuptaR, DeGeorgiaM, et al. Bispectral Index monitoring correlates with sedation scales in brain-injured patients [J]. Crit Care Med, 2004, 32 ( 12): 2403- 2406. DOI: 10.1097/01.CCM.0000147442.14921.A5.
[151]
Hernández-GancedoC, PestañaD, PeñaN, et al. Monitoring sedation in critically ill patients: bispectral index, Ramsay and observer scales [J]. Eur J Anaesthesiol, 2006, 23 ( 8): 649- 653. DOI: 10.1017/S0265021506000056.
[152]
Hernández-GancedoC, PestañaD, Pérez-ChrzanowskaH, et al. Comparing Entropy and the Bispectral index with the Ramsay score in sedated ICU patients [J]. J Clin Monit Comput, 2007, 21 ( 5): 295- 302. DOI: 10.1007/s10877-007-9087-7.
[153]
LuCH, OuyangHY, ManKM, et al. Relative reliability of the auditory evoked potential and Bispectral Index for monitoring sedation level in surgical intensive care patients [J]. Anaesth Intensive Care, 2008, 36 ( 4): 553- 559.
[154]
MondelloE, SiliottiR, NotoG, et al. Bispectral Index in ICU: correlation with Ramsay score on assessment of sedation level [J]. J Clin Monit Comput, 2002, 17 ( 5): 271- 277.
[155]
OlsonDM, ThoyreSM, PetersonED, et al. A randomized evaluation of bispectral index-augmented sedation assessment in neurological patients [J]. Neurocrit Care, 2009, 11 ( 1): 20- 27. DOI: 10.1007/s12028-008-9184-6.
[156]
RikerRR, FraserGL, SimmonsLE, et al. Validating the Sedation-Agitation Scale with the Bispectral Index and Visual Analog Scale in adult ICU patients after cardiac surgery [J]. Intensive Care Med, 2001, 27 ( 5): 853- 858.
[157]
RikerRR, FraserGL, WilkinsML. Comparing the bispectral index and suppression ratio with burst suppression of the electroencephalogram during pentobarbital infusions in adult intensive care patients [J]. Pharmacotherapy, 2003, 23 ( 9): 1087- 1093. DOI: 10.1592/phco.23.10.1087.32766.
[158]
TrouillerP, FangioP, Paugam-BurtzC, et al. Frequency and clinical impact of preserved bispectral index activity during deep sedation in mechanically ventilated ICU patients [J]. Intensive Care Med, 2009, 35 ( 12): 2096- 2104. DOI: 10.1007/s00134-009-1636-8.
[159]
WeberF, SteinbergerM, RitzkaM, et al. Measuring depth of sedation in intensive care patients with the electroencephalographic Narcotrend Index [J]. Eur J Anaesthesiol, 2008, 25 ( 2): 123- 128. DOI: 10.1017/S0265021507001329.
[160]
FrenzelD, GreimCA, SommerC, et al. Is the bispectral index appropriate for monitoring the sedation level of mechanically ventilated surgical ICU patients? [J]. Intensive Care Med, 2002, 28 ( 2): 178- 183. DOI: 10.1007/s00134-001-1183-4.
[161]
HaenggiM, Ypparila-WoltersH, BieriC, et al. Entropy and bispectral index for assessment of sedation, analgesia and the effects of unpleasant stimuli in critically ill patients: an observational study [J]. Crit Care, 2008, 12 ( 5): R119. DOI: 10.1186/cc7015.
[162]
RoustanJP, ValetteS, AubasP, et al. Can electroencephalographic analysis be used to determine sedation levels in critically ill patients? [J]. Anesth Analg, 2005, 101 ( 4): 1141-1151, table of contents. DOI: 10.1213/01.ane.0000167782.47957.e1.
[163]
TonnerPH, WeiC, BeinB, et al. Comparison of two bispectral index algorithms in monitoring sedation in postoperative intensive care patients [J]. Crit Care Med, 2005, 33 ( 3): 580- 584. DOI: 10.1097/01.CCM.0000156291.04287.7F.
[164]
WalshTS, RamsayP, LapinlampiTP, et al. An assessment of the validity of spectral entropy as a measure of sedation state in mechanically ventilated critically ill patients [J]. Intensive Care Med, 2008, 34 ( 2): 308- 315. DOI: 10.1007/s00134-007-0858-x.
[165]
TasakaCL, DubyJJ, PandyaK, et al. Inadequate sedation during therapeutic paralysis: use of Bispectral Index in critically ill patients [J]. Drugs Real World Outcomes, 2016, 3 ( 2): 201- 208. DOI: 10.1007/s40801-016-0076-3.
[166]
BryczkowskiSB, LopreiatoMC, YonclasPP, et al. Delirium prevention program in the surgical intensive care unit improved the outcomes of older adults [J]. J Surg Res, 2014, 190 ( 1): 280- 288. DOI: 10.1016/j.jss.2014.02.044.
[167]
ElyEW, ShintaniA, TrumanB, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit [J]. JAMA, 2004, 291 ( 14): 1753- 1762. DOI: 10.1001/jama.291.14.1753.
[168]
van den BoogaardM, PetersSA, van der HoevenJG, et al. The impact of delirium on the prediction of in-hospital mortality in intensive care patients [J]. Crit Care, 2010, 14 ( 4): R146. DOI: 10.1186/cc9214.
[169]
WoltersAE, van DijkD, PasmaW, et al. Long-term outcome of delirium during intensive care unit stay in survivors of critical illness: a prospective cohort study [J]. Crit Care, 2014, 18 ( 3): R125. DOI: 10.1186/cc13929.
[170]
BrownCH, LaflamA, MaxL, et al. The impact of delirium after cardiac surgical procedures on postoperative resource use [J]. Ann Thorac Surg, 2016, 101 ( 5): 1663- 1669. DOI: 10.1016/j.athoracsur.2015.12.074.
[171]
HanJH, ShintaniA, EdenS, et al. Delirium in the emergency department: an independent predictor of death within 6 months [J]. Ann Emerg Med, 2010, 56 ( 3): 244- 252. e1. DOI: 10.1016/j.annemergmed.2010.03.003.
[172]
Klein KlouwenbergPM, ZaalIJ, SpitoniC, et al. The attributable mortality of delirium in critically ill patients: prospective cohort study [J]. BMJ, 2014, 349: g6652. DOI: 10.1136/bmj.g6652.
[173]
NoriegaFJ, VidánMT, SánchezE, et al. Incidence and impact of delirium on clinical and functional outcomes in older patients hospitalized for acute cardiac diseases [J]. Am Heart J, 2015, 170 ( 5): 938- 944. DOI: 10.1016/j.ahj.2015.08.007.
[174]
PauleyE, LishmanovA, SchumannS, et al. Delirium is a robust predictor of morbidity and mortality among critically ill patients treated in the cardiac intensive care unit [J]. Am Heart J, 2015, 170 ( 1): 79-86, 86. e1. DOI: 10.1016/j.ahj.2015.04.013.
[175]
LinSM, LiuCY, WangCH, et al. The impact of delirium on the survival of mechanically ventilated patients [J]. Crit Care Med, 2004, 32 ( 11): 2254- 2259. DOI: 10.1097/01.CCM.0000145587.16421.BB.
[176]
AbelhaFJ, FernandesV, BotelhoM, et al. Apolipoprotein E e4 allele does not increase the risk of early postoperative delirium after major surgery [J]. J Anesth, 2012, 26 ( 3): 412- 421. DOI: 10.1007/s00540-012-1326-5.
[177]
AgarwalV, O'NeillPJ, CottonBA, et al. Prevalence and risk factors for development of delirium in burn intensive care unit patients [J]. J Burn Care Res, 2010, 31 ( 5): 706- 715. DOI: 10.1097/BCR.0b013e3181eebee9.
[178]
AldemirM, OzenS, KaraIH, et al. Predisposing factors for delirium in the surgical intensive care unit [J]. Crit Care, 2001, 5 ( 5): 265- 270.
[179]
AnglesEM, RobinsonTN, BifflWL, et al. Risk factors for delirium after major trauma [J]. Am J Surg, 2008, 196 ( 6): 864- 869; discussion 869-870. DOI: 10.1016/j.amjsurg.2008.07.037.
[180]
BrownCH, LaFlamA, MaxL, et al. Delirium after spine surgery in older adults: incidence, risk factors, and outcomes [J]. J Am Geriatr Soc, 2016, 64 ( 10): 2101- 2108. DOI: 10.1111/jgs.14434.
[181]
BryczkowskiSB, LopreiatoMC, YonclasPP, et al. Risk factors for delirium in older trauma patients admitted to the surgical intensive care unit [J]. J Trauma Acute Care Surg, 2014, 77 ( 6): 944- 951. DOI: 10.1097/TA.0000000000000427.
[182]
DittrichT, Tschudin-SutterS, WidmerAF, et al. Risk factors for new-onset delirium in patients with bloodstream infections: independent and quantitative effect of catheters and drainages: a four-year cohort study [J]. Ann Intensive Care, 2016, 6 ( 1): 104. DOI: 10.1186/s13613-016-0205-x.
[183]
GuentherU, TheuerkaufN, FrommannI, et al. Predisposing and precipitating factors of delirium after cardiac surgery: a prospective observational cohort study [J]. Ann Surg, 2013, 257 ( 6): 1160- 1167. DOI: 10.1097/SLA.0b013e318281b01c.
[184]
GuillamondeguiOD, RichardsJE, ElyEW, et al. Does hypoxia affect intensive care unit delirium or long-term cognitive impairment after multiple trauma without intracranial hemorrhage? [J]. J Trauma, 2011, 70 ( 4): 910- 915. DOI: 10.1097/TA.0b013e3182114f18.
[185]
HasegawaT, SaitoI, TakedaD, et al. Risk factors associated with postoperative delirium after surgery for oral cancer [J]. J Craniomaxillofac Surg, 2015, 43 ( 7): 1094- 1098. DOI: 10.1016/j.jcms.2015.06.011.
[186]
HatanoY, NarumotoJ, ShibataK, et al. White-matter hyperintensities predict delirium after cardiac surgery [J]. Am J Geriatr Psychiatry, 2013, 21 ( 10): 938- 945. DOI: 10.1016/j.jagp.2013.01.061.
[187]
HeymannA, SanderM, KrahneD, et al. Hyperactive delirium and blood glucose control in critically ill patients [J]. J Int Med Res, 2007, 35 ( 5): 666- 677. DOI: 10.1177/147323000703500511.
[188]
HigashiH, InabaS, SaitoM, et al. Heart failure as a strong independent predictor of delirium after pacemaker operations [J]. IJC Metab Endocr, 2015, 8: 42- 45. DOI: 10.1016/j.ijcme.2015.07.003.
[189]
HsiehSJ, SotoGJ, HopeAA, et al. The association between acute respiratory distress syndrome, delirium, and in-hospital mortality in intensive care unit patients [J]. Am J Respir Crit Care Med, 2015, 191 ( 1): 71- 78. DOI: 10.1164/rccm.201409-1690OC.
[190]
IngallsNK, ArmstrongB, HesterM, et al. The fog of war: delirium prevalence in a combat intensive care unit [J]. Mil Med, 2016, 181 ( 3): 209- 212. DOI: 10.7205/MILMED-D-15-00064.
[191]
KaehrE. Is age a risk factor for ICU delirium? A prospective cohort study [J]. J Am Geriatr Soc, 2014, 62 ( 1): S265. DOI: 10.1111/jgs.12870.
[192]
KamdarBB, NiessenT, ColantuoniE, et al. Delirium transitions in the medical ICU: exploring the role of sleep quality and other factors [J]. Crit Care Med, 2015, 43 ( 1): 135- 141. DOI: 10.1097/CCM.0000000000000610.
[193]
KartashevaED, GusarovVG, ZamyatinMN. Delirium in patients with acute coronary syndromes: prevalence, risk factors, outcomes [J]. Eur Heart J, 2016, 37 ( Suppl 1): 767. DOI: 10.1093/eurheartj/ehw433.
[194]
KawataniY, NakamuraY, HayashiY, et al. Development of delirium in the intensive dare unit in patients after endovascular aortic repair: a retrospective evaluation of the prevalence and risk factors [J]. Crit Care Res Pract, 2015, 2015: 405817. DOI: 10.1155/2015/405817.
[195]
KazmierskiJ, BanysA, LatekJ, et al. Cortisol levels and neuropsychiatric diagnosis as markers of postoperative delirium: a prospective cohort study [J]. Crit Care, 2013, 17 ( 2): R38. DOI: 10.1186/cc12548.
[196]
KimH, ChungS, JooYH, et al. The major risk factors for delirium in a clinical setting [J]. Neuropsychiatr Dis Treat, 2016, 12: 1787- 1793. DOI: 10.2147/NDT.S112017.
[197]
KoskdereliogluA, OnderO, GucuyenerM, et al. Screening for postoperative delirium in patients with acute hip fracture: assessment of predictive factors [J]. Geriatr Gerontol Int, 2017, 17 ( 6): 919- 924. DOI: 10.1111/ggi.12806.
[198]
KosterS, HensensAG, SchuurmansMJ, et al. Prediction of delirium after cardiac surgery and the use of a risk checklist [J]. Eur J Cardiovasc Nurs, 2013, 12 ( 3): 284- 292. DOI: 10.1177/1474515112450244.
[199]
KumarAK, JayantA, AryaVK, et al. Delirium after cardiac surgery: A pilot study from a single tertiary referral center [J]. Ann Card Anaesth, 2017, 20 ( 1): 76- 82. DOI: 10.4103/0971-9784.197841.
[200]
KwizeraA, NakibuukaJ, SsemogerereL, et al. Incidence and risk factors for delirium among mechanically ventilated patients in an african intensive care setting: an observational multicenter study [J]. Crit Care Res Pract, 2015, 2015: 491780. DOI: 10.1155/2015/491780.
[201]
LahariyaS, GroverS, BaggaS, et al. Delirium in patients admitted to a cardiac intensive care unit with cardiac emergencies in a developing country: incidence, prevalence, risk factor and outcome [J]. Gen Hosp Psychiatry, 2014, 36 ( 2): 156- 164. DOI: 10.1016/j.genhosppsych.2013.10.010.
[202]
LeiteMA, OsakuEF, CostaCR, et al. Delirium during weaning from mechanical ventilation [J]. Crit Care Res Pract, 2014, 2014: 546349. DOI: 10.1155/2014/546349.
[203]
LimpawattanaP, PanitchoteA, TangvoraphonkchaiK, et al. Delirium in critical care: a study of incidence, prevalence, and associated factors in the tertiary care hospital of older Thai adults [J]. Aging Ment Health, 2016, 20 ( 1): 74- 80. DOI: 10.1080/13607863.2015.1035695.
[204]
LinSM, HuangCD, LiuCY, et al. Risk factors for the development of early-onset delirium and the subsequent clinical outcome in mechanically ventilated patients [J]. J Crit Care, 2008, 23 ( 3): 372- 379. DOI: 10.1016/j.jcrc.2006.09.001.
[205]
LiuP, LiYW, WangXS, et al. High serum interleukin-6 level is associated with increased risk of delirium in elderly patients after noncardiac surgery: a prospective cohort study [J]. Chin Med J (Engl), 2013, 126 ( 19): 3621- 3627.
[206]
LiuZ, PangX, ZhangX, et al. Incidence and risk factors of delirium in patients after type-A aortic dissection surgery [J]. J Cardiothorac Vasc Anesth, 2017, 31 ( 6): 1996- 1999. DOI: 10.1053/j.jvca.2016.11.011.
[207]
ManiarHS, LindmanBR, EscallierK, et al. Delirium after surgical and transcatheter aortic valve replacement is associated with increased mortality [J]. J Thorac Cardiovasc Surg, 2016, 151 ( 3): 815- 823. e2. DOI: 10.1016/j.jtcvs.2015.10.114.
[208]
MarizJ, SantosNC, AfonsoH, et al. Risk and clinical-outcome indicators of delirium in an emergency department intermediate care unit (EDIMCU): an observational prospective study [J]. BMC Emerg Med, 2013, 13: 2. DOI: 10.1186/1471-227X-13-2.
[209]
McNicollL, PisaniMA, ZhangY, et al. Delirium in the intensive care unit: occurrence and clinical course in older patients [J]. J Am Geriatr Soc, 2003, 51 ( 5): 591- 598.
[210]
MiyagawaY, YokoyamaY, FukuzawaS, et al. Risk factors for postoperative delirium in abdominal surgery: a proposal of a postoperative delirium risk score in abdominal surgery [J]. Dig Surg, 2017, 34 ( 2): 95- 102. DOI: 10.1159/000449044.
[211]
MoriS, TakedaJR, CarraraFS, et al. Incidence and factors related to delirium in an intensive care unit [J]. Rev Esc Enferm USP, 2016, 50 ( 4): 587- 593. DOI: 10.1590/S0080-623420160000500007.
[212]
NguyenDN, HuyghensL, SchiettecatteJ, et al. High prolactin levels are associated with more delirium in septic patients [J]. J Crit Care, 2016, 33: 56- 61. DOI: 10.1016/j.jcrc.2015.12.021.
[213]
NorkienėI, RingaitienėD, KuzminskaitėV, et al. Incidence and risk factors of early delirium after cardiac surgery [J]. Biomed Res Int, 2013, 2013: 323491. DOI: 10.1155/2013/323491.
[214]
OmiyaH, YoshitaniK, YamadaN, et al. Preoperative brain magnetic resonance imaging and postoperative delirium after off-pump coronary artery bypass grafting: a prospective cohort study [J]. Can J Anaesth, 2015, 62 ( 6): 595- 602. DOI: 10.1007/s12630-015-0327-x.
[215]
OuimetS, KavanaghBP, GottfriedSB, et al. Incidence, risk factors and consequences of ICU delirium [J]. Intensive Care Med, 2007, 33 ( 1): 66- 73. DOI: 10.1007/s00134-006-0399-8.
[216]
ParenteD, LuísC, VeigaD, et al. Congestive heart failure as a determinant of postoperative delirium [J]. Rev Port Cardiol, 2013, 32 ( 9): 665- 671. DOI: 10.1016/j.repc.2012.12.020.
[217]
PiaoJ, JinY, LeeSM. Triggers and nursing influences on delirium in intensive care units [J]. Nurs Crit Care, 2018, 23 ( 1): 8- 15. DOI: 10.1111/nicc.12250.
[218]
PipanmekapornT, ChittawatanaratK, ChaiwatO, et al. Incidence and risk factors of delirium in multi-center Thai surgical intensive care units: a prospective cohort study [J]. J Intensive Care, 2015, 3: 53. DOI: 10.1186/s40560-015-0118-z.
[219]
PisaniMA, MurphyTE, Van NessPH, et al. Characteristics associated with delirium in older patients in a medical intensive care unit [J]. Arch Intern Med, 2007, 167 ( 15): 1629- 1634. DOI: 10.1001/archinte.167.15.1629.
[220]
PolRA, van LeeuwenBL, IzaksGJ, et al. C-reactive protein predicts postoperative delirium following vascular surgery [J]. Ann Vasc Surg, 2014, 28 ( 8): 1923- 1930. DOI: 10.1016/j.avsg.2014.07.004.
[221]
RingaitienėD, GineitytėD, VickaV, et al. Impact of malnutrition on postoperative delirium development after on pump coronary artery bypass grafting [J]. J Cardiothorac Surg, 2015, 10: 74. DOI: 10.1186/s13019-015-0278-x.
[222]
RitterC, TomasiCD, Dal-PizzolF, et al. Inflammation biomarkers and delirium in critically ill patients [J]. Crit Care, 2014, 18 ( 3): R106. DOI: 10.1186/cc13887.
[223]
RobinsonTN, RaeburnCD, TranZV, et al. Postoperative delirium in the elderly: risk factors and outcomes [J]. Ann Surg, 2009, 249 ( 1): 173- 178. DOI: 10.1097/SLA.0b013e31818e4776.
[224]
RoggenbachJ, KlamannM, von HakenR, et al. Sleep-disordered breathing is a risk factor for delirium after cardiac surgery: a prospective cohort study [J]. Crit Care, 2014, 18 ( 5): 477. DOI: 10.1186/s13054-014-0477-1.
[225]
RudigerA, BegdedaH, BabicD, et al. Intra-operative events during cardiac surgery are risk factors for the development of delirium in the ICU [J]. Crit Care, 2016, 20: 264. DOI: 10.1186/s13054-016-1445-8.
[226]
SchreiberMP, ColantuoniE, BienvenuOJ, et al. Corticosteroids and transition to delirium in patients with acute lung injury [J]. Crit Care Med, 2014, 42 ( 6): 1480- 1486. DOI: 10.1097/CCM.0000000000000247.
[227]
HsiehSJ, HopeAA, DaytonC, et al. The association between pre-ICU frailty and ICU delirium [J]. Am J Respir Crit Care Med, 2014, 189: A3937.
[228]
SevukU, BaysalE, AyN, et al. Relationship between cobalamin deficiency and delirium in elderly patients undergoing cardiac surgery [J]. Neuropsychiatr Dis Treat, 2015, 11: 2033- 2039. DOI: 10.2147/NDT.S87888.
[229]
ShadvarK, BaastaniF, MahmoodpoorA, et al. Evaluation of the prevalence and risk factors of delirium in cardiac surgery ICU [J]. J Cardiovasc Thorac Res, 2013, 5 ( 4): 157- 161. DOI: 10.5681/jcvtr.2013.034.
[230]
HsiehSJ, HopeAA, DaytonC, et al. The association between pre-ICU frailty and ICU delirium [J]. Am J Respir Crit Care Med, 2014, 189: A3937.
[231]
ShiCM, WangDX, ChenKS, et al. Incidence and risk factors of delirium in critically ill patients after non-cardiac surgery [J]. Chin Med J (Engl), 2010, 123 ( 8): 993- 999.
[232]
SimonsKS, WorkumJD, SlooterAJ, et al. Effect of preadmission sunlight exposure on intensive care unit-acquired delirium: a multicenter study [J]. J Crit Care, 2014, 29 ( 2): 283- 286. DOI: 10.1016/j.jcrc.2013.10.027.
[233]
SmulterN, LingehallHC, GustafsonY, et al. Delirium after cardiac surgery: incidence and risk factors [J]. Interact Cardiovasc Thorac Surg, 2013, 17 ( 5): 790- 796. DOI: 10.1093/icvts/ivt323.
[234]
SvenningsenH, EgerodI, VidebechP, et al. Fluctuations in sedation levels may contribute to delirium in ICU patients [J]. Acta Anaesthesiol Scand, 2013, 57 ( 3): 288- 293. DOI: 10.1111/aas.12048.
[235]
TseL, SchwarzSK, BoweringJB, et al. Incidence of and risk factors for delirium after cardiac surgery at a quaternary care center: a retrospective cohort study [J]. J Cardiothorac Vasc Anesth, 2015, 29 ( 6): 1472- 1479. DOI: 10.1053/j.jvca.2015.06.018.
[236]
Van RompaeyB, ElseviersMM, SchuurmansMJ, et al. Risk factors for delirium in intensive care patients: a prospective cohort study [J]. Crit Care, 2009, 13 ( 3): R77. DOI: 10.1186/cc7892.
[237]
VondelingAM, ZaalIJ, KnolW, et al. Anticholinergic burden at ICU admission provokes the onset of delirium in older patients [J]. Eur Geriatr Med, 2014, 5 ( Suppl 1): S56. DOI: 10.1016/S1878-7649(14)70112-3.
[238]
WoltersAE, VeldhuijzenDS, ZaalIJ, et al. Systemic corticosteroids and transition to delirium in critically ill patients [J]. Crit Care Med, 2015, 43( 12): e585- 588. DOI: 10.1097/CCM.0000000000001302.
[239]
YoshitakaS, EgiM, MorimatsuH, et al. Perioperative plasma melatonin concentration in postoperative critically ill patients: its association with delirium [J]. J Crit Care, 2013, 28 ( 3): 236- 242. DOI: 10.1016/j.jcrc.2012.11.004.
[240]
ZhangWY, WuWL, GuJJ, et al. Risk factors for postoperative delirium in patients after coronary artery bypass grafting: a prospective cohort study [J]. J Crit Care, 2015, 30 ( 3): 606- 612. DOI: 10.1016/j.jcrc.2015.02.003.
[241]
陈鹏. 机械通气患者谵妄发生率、高危因素及预后调查:一项前瞻性调查研究[D]. 杭州: 浙江大学, 2013.
ChenP. Prevalence of incidence, risk factors and outcomes of delirium in critically ill patients with mechanical ventilation [D].Hangzhou: Zhejiang University, 2013.
[242]
陈英. 老年心外手术后患者在ICU发生谵妄的相关因素研究[J]. 中国社区医师, 2016, 32 ( 25): 161- 162. DOI: 10.3969/j.issn.1007-614x.2016.25.98.
ChenY. Study on related factors of elderly patients with delirium after cardiac surgery in ICU [J]. Chin Comm Doc, 2016, 32 (25): 161-162. DOI: 10.3969/j.issn.1007-614x.2016.25.98.
[243]
程文涛王照华. ICU危重症患者发生谵妄的原因分析[J]. 临床和实验医学杂志, 2015, 14 ( 7): 600-602, 603. DOI: 10.3969/j.issn.1671-4695.2015.07.029.
ChengWT, WangZH. Study on causes of delirium in critical patients in ICU [J]. J Clin Exper Med, 2015, 14 (7): 600-602, 603. DOI: 10.3969/j.issn.1671-4695.2015.07.029.
[244]
单可记段慧杨磊,. 非机械通气重症患者发生谵妄的危险因素分析[J]. 中国当代医药, 2015, 22 ( 3): 35- 37.
ShanKJ, DuanH, YangL, et al. Risk factors of delirium in patients with severe non-mechanical ventilation [J]. Chin Modern Med, 2015, 22 (3): 35-37.
[245]
董丽宏肖李乐云朱晓琳. 重症监护室患者谵妄发生情况及其影响因素分析[J]. 中国医药导报, 2014, 11 ( 35): 41- 44.
DongLH, XiaoliLY, ZhuXL. Delirium occurrence and influence factors investigation analysis on ICU patients [J]. Chin Med Herald, 2014, 11 (35): 41-44.
[246]
冯传江姚琴琴欧丹丹,. 危重患者谵妄发生的危险因素分析[J]. 临床麻醉学杂志, 2016, 32 ( 7): 672- 675.
FengCJ, YaoQQ, OuDD, et al. Analysis of risk factors of delirium in critically ill patients [J]. J Clin Anesthesiol, 2016, 32 (7): 672-675.
[247]
黄毅雄邹剑锋刘于红. 重症监护病房髋部骨折患者术后谵妄的回顾性分析[J]. 临床误诊误治, 2012, 25 ( 6): 89- 91. DOI: 10.3969/j.issn.1002-3429.2012.06.043.
HuangYX, ZouJF, LiuYH. Clinical investigation of postoperative delirium in ICU patients undergoing hip-surgery [J]. Clin Misdiagn Mistherapy, 2012, 25 (6): 89-91. DOI: 10.3969/j.issn.1002-3429.2012.06.043.
[248]
李晓晴马闻建姜霁纹,. 主动脉夹层术后谵妄的临床特点和相关危险因素研究[J]. 中国医药, 2014, 9 ( 5): 609- 614. DOI: 10.3760/cma.j.issn.1673-4777.2014.05.001.
LiXQ, MaWJ, JiangQW, et al. Study on morbidity and related risk factors of postoperative delirium after aortic dissection surgery [J]. Chin Med, 2014, 9 (5): 609-614. DOI: 10.3760/cma.j.issn.1673-4777.2014.05.001.
[249]
李晓晴马闻建姜霁纹,. 冠状动脉旁路移植术后谵妄的发生率和相关危险因素研究[J]. 中华神经科杂志, 2015, 48 ( 12): 1069- 1073. DOI: 10.3760/cma.j.issn.1006-7876.2015.12.007.
LiXQ, MaWJ, JiangQW, et al. Morbidity and related risk factors of postoperative delirium in the patients undergoing coronary artery bypass grafting [J]. Chin J Neurol, 2015, 48 (12): 1069-1073. DOI: 10.3760/cma.j.issn.1006-7876.2015.12.007.
[250]
廖莲梅曾永吉. ICU高龄患者脊柱手术后谵妄危险因素分析及护理干预[J]. 中国医药科学, 2016, 6 ( 1): 109- 112.
LiaoLM, ZengYJ. Analysis and nursing intervention on risk factors of delirium after spinal surgery in ICU elderly patients [J]. Chin Med Pharmacy, 2016, 6 (1): 109-112
[251]
刘丹吕杰安友仲. 机械通气老年危重症患者谵妄及预后的危险因素分析[J]. 中华危重病急救医学, 2016, 28 ( 11): 1003- 1008. DOI: 10.3760/cma.j.issn.2095-4352.2016.11.011.
LiuD, LyuJ, AnYZ. Risk factors of delirium and outcomes in senile critical patients undergoing mechanical ventilation [J]. Chin Crit Care Med, 2016, 28 (11): 1003-1008. DOI: 10.3760/cma.j.issn.2095-4352.2016.11.011.
[252]
马洁葵李绮慈. ICU机械通气老年患者并发谵妄的影响因素及护理对策[J]. 广东医学, 2014, 35 ( 4): 632- 634.
MaJK, LiQC. Influencing factors and nursing countermeasures of senile patients complicated with delirium after mechanical ventilation in ICU [J]. Guangdong Med J, 2014, 35 (4): 632-634.
[253]
梅伟刘尚昆张治国,. 非心脏手术患者全麻后早期谵妄的危险因素分析[J]. 临床外科杂志, 2010, 18 ( 5): 344- 347. DOI: 10.3969/j.issn.1005-6483.2009.05.025.
MeiW, LiuSK, ZhangZG, et al. High risk factors for early delirium after elective non-cardiovascular surgery under general anaesthesia [J]. J Clin Surg, 2010, 18 (5): 344-347. DOI: 10.3969/j.issn.1005-6483.2009.05.025.
[254]
穆东亮王东信李立环,. 冠状动脉旁路移植手术后早期谵妄与认知功能障碍的关系[J]. 北京大学学报(医学版), 2011, 43 ( 2): 242- 249. DOI: 10.3969/j.issn.1671-167X.2011.02.016.
MuDL, WangDX, LiLH, et al. Postoperative delirium is associated with cognitive dysfunction one week after coronary artery bypass grafting surgery [J]. J Peking Univ (Health Sci), 2011, 43 (2): 242-249. DOI: 10.3969/j.issn.1671-167X.2011.02.016.
[255]
宁艳花张琳王儒林,. 危重症患者发生重症监护病房谵妄的危险因素分析[J]. 中国全科医学, 2013, 16 ( 20): 2358- 2361. DOI: 10.3969/j.issn.1007-9572.2013.20.013.
NingYH, ZhangL, WangRL, et al. Risk factors for ICU delirium in critical patients [J]. Chin Gen Prac, 2013, 16 (20): 2358-2361. DOI: 10.3969/j.issn.1007-9572.2013.20.013.
[256]
潘利飞章仲恒叶向红,. ICU患者谵妄的危险因素分析[J]. 解放军护理杂志, 2014, 31 ( 1): 46- 48. DOI: 10.3969/j.issn.1008-9993.2014.01.014.
PanLF, ZhangZH, YeXH, et al. Analysis of risk factors of delirium in ICU patients [J]. Nurs J Chin PLA, 2014, 31 (1): 46-48. DOI: 10.3969/j.issn.1008-9993.2014.01.014.
[257]
任春梅. 心脏外科术后ICU谵妄相关因素调查及对策[J]. 临床合理用药杂志, 2015, 8 ( 20): 18-19, 34. DOI: 10.15887/j.cnki.13-1389/r.2015.20.010.
RenCM. Influencing factors of ICU delirium after cardiac surgery and countermeasures [J]. Rational Drug Use, 2015, 8 (20): 18-19, 34. DOI: 10.15887/j.cnki.13-1389/r.2015.20.010.
[258]
宋辉琼邹玉凤张宗泽,. 肿瘤细胞减灭术联合腹腔内热灌注化疗术后谵妄发生的危险因素分析[J]. 临床外科杂志, 2016, 24 ( 4): 308- 310. DOI: 10.3969/j.issn.1005-6483.2016.04.024.
SongHQ, ZouYF, ZhangZZ, et al. Risk factors for early postoperative delirium in cytoreductive surgery with hyperthermic intraperitoneal chemotherapy patients [J]. J Clin Surg, 2016, 24 (4): 308-310. DOI: 10.3969/j.issn.1005-6483.2016.04.024.
[259]
苏仙王东信孟昭婷. 老年患者低体重指数增加术后谵妄风险:前瞻性队列研究[J]. 临床麻醉学杂志, 2015, 31 ( 5): 421- 426.
SuX, WangDX, MengZT. Low body mass index is associated with increased risk of delirium in elderly patients after surgery: a prospective cohort study [J]. J Clin Anesthesiol, 2015, 31 (5): 421-426.
[260]
苏云术徐利军魏翔. 心脏术后谵妄的原因分析与处理对策[J]. 广州医学院学报, 2013, 41 ( 4): 94- 96. DOI: 10.3969/j.issn.1008-1836.2013.04.028.
SuYS, XuLJ, WeiX. Etiologies and treatment strategies for delirium following cardiac surgery [J]. Acad J Guangzhou Med College, 2013, 41 (4): 94-96. DOI: 10.3969/j.issn.1008-1836.2013.04.028.
[261]
孙芳施乾坤章淬,. 急性主动脉夹层术后谵妄状态的高危因素分析[J]. 临床荟萃, 2014, 29 ( 7): 721-723, 724. DOI: 10.3969/j.issn.1004-583X.2014.07.001.
SunF, ShiQK, ZhangC, et al. Analysis of risk factors leading to delirium following acute aortic dissection surgery [J]. Clin Focus, 2014, 29 (7): 721-723, 724. DOI: 10.3969/j.issn.1004-583X.2014.07.001.
[262]
王晓航宋先荣程兆云,. 心脏术后谵妄的发生率及危险因素分析[J]. 国际外科学杂志, 2015, 42 ( 12): 807- 810. DOI: 10.3760/cma.j.issn.1673-4203.2015.12.005.
WangXH, SongXR, ChengZY, et al. Analysis of the incidence rate and the risk factors of delirium following cardiac surgery [J]. Internation J Surg, 2015, 42 (12): 807-810. DOI: 10.3760/cma.j.issn.1673-4203.2015.12.005.
[263]
王晓雪贾玉琴. 重症老年髋部骨折患者术后谵妄的发生率及危险因素分析[J]. 内蒙古医学杂志, 2016, 48 ( 8): 936- 938. DOI: 10.16096/J.cnki.nmgyxzz.2016.48.08.014.
WangXX, JiaYQ. Incidence and risk factors of postoperative delirium in elderly patients with severe hip fracture [J]. Inner Mongolia Med J, 2016, 48 (8): 936-938. DOI: 10.16096/J.cnki.nmgyxzz.2016.48.08.014.
[264]
邢志群. 危重患者术后兴奋型谵妄的危险因素和临床指标变化的相关研究[D]. 济南: 山东大学, 2016.
XingZQ. Risk factors and change of Clinical index of the postoperative hyperactivity delirium in critical ill patients [D]. Jinan: Shandong University, 2016.
[265]
许金国张成鑫葛圣林. 成人心脏瓣膜置换术后谵妄的危险因素分析[J]. 健康导报(医学版), 2015, 20 ( 12): 3- 5.
XuJG, ZhangCX, GeSL. Analysis of risk factors for spasticity after adult heart valve replacement [J]. J Health Herald, 2015, 20 (12): 3-5.
[266]
薛珲胡友斌李书清,. 重症监护病房谵妄危险因素分析[J]. 中国全科医学, 2011, 14 ( 27): 3094- 3097. DOI: 10.3969/j.issn.1007-9572.2011.27.011.
XueH, HuYB, LiSQ, et al. Risk factors of delirium in ICU [J]. Chin Gen Prac, 2011, 14 (27): 3094-3097. DOI: 10.3969/j.issn.1007-9572.2011.27.011.
[267]
杨昆王雁. 急诊危重症患者谵妄发生的危险因素及护理对策[J]. 护士进修杂志, 2016, 31 ( 16): 1493- 1495. DOI: 10.16821/j.cnki.hsjx.2016.16.020.
YangK, WangY. Risk factors and nursing countermeasures of delirium in emergency critically ill patients [J]. J Nurs Train, 2016, 31 (16): 1493-1495. DOI: 10.16821/j.cnki.hsjx.2016.16.020.
[268]
杨旭东刘瑞昌刘克英,. 全麻下血管化游离皮瓣修复术后患者谵妄的危险因素[J]. 中华麻醉学杂志, 2010, 30 ( 3): 294- 296. DOI: 10.3760/cma.j.issn.0254-1416.2010.03.013.
YangXD, LiuRC, LiuKY, et al. Risk factors for postoperative delirium in patients after vascular free flap reconstruction performed under general anesthesia [J]. Chin J Anesthesiol, 2010, 30 (3): 294-296. DOI: 10.3760/cma.j.issn.0254-1416.2010.03.013.
[269]
张涛朱明艳朱明. 普胸外科患者术后发生谵妄的临床分析[J]. 吉林医学, 2012, 33 ( 11): 2287- 2288. DOI: 10.3969/j.issn.1004-0412.2012.11.036.
ZhangT, ZhuMY, ZhuM. Clinical analysis of delirium after general thoracic surgery [J]. Jilin Med J, 2012, 33 (11): 2287-2288. DOI: 10.3969/j.issn.1004-0412.2012.11.036.
[270]
张晔章淬牛永胜,. 老年患者心脏术后谵妄的危险因素研究[J]. 中华老年多器官疾病杂志, 2015, 15 ( 4): 258- 262. DOI: 10.11915/j.issn.1671-5403.2015.04.060.
ZhangY, ZhangC, NiuYS, et al. Risk factors of delirium in elderly patients after cardiac surgery [J]. Chin J Mult Organ Dis Eld, 2015, 15 (4): 258-262. DOI: 10.11915/j.issn.1671-5403.2015.04.060.
[271]
章庆. 非心脏手术老年患者术中血压变异性与术后谵妄和术后认知功能障碍的相关性研究[D]. 泸州: 西南医科大学, 2016.
ZhangQ. Correlation between blood pressure variability and postoperative delirium and postoperative cognitive dysfunction in elderly patients undergoing non-cardiac surgery [D]. Luzhou: Southwest Medical University, 2016.
[272]
ZaalIJ, DevlinJW, PeelenLM, et al. A systematic review of risk factors for delirium in the ICU [J]. Crit Care Med, 2015, 43 ( 1): 40- 47. DOI: 10.1097/CCM.0000000000000625.
[273]
ArumugamS, El-MenyarA, Al-HassaniA, et al. Delirium in the intensive care unit [J]. J Emerg Trauma Shock, 2017, 10 ( 1): 37- 46. DOI: 10.4103/0974-2700.199520.
[274]
WangXT, LyuL, TangB, et al. Delirium in intensive care unit patients: ten important points of understanding [J]. Chin Med J (Engl), 2017, 130 ( 20): 2498- 2502. DOI: 10.4103/0366-6999.216405.
[275]
Gusmao-FloresD, SalluhJI, Chalhub, et al. The confusion assessment method for the intensive care unit (CAM-ICU) and intensive care delirium screening checklist (ICDSC) for the diagnosis of delirium: a systematic review and meta-analysis of clinical studies [J]. Crit Care, 2012, 16 ( 4): R115. DOI: 10.1186/cc11407.
[276]
ElyEW, InouyeSK, BernardGR, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU) [J]. JAMA, 2001, 286 ( 21): 2703- 2710. DOI: 10.1001/jama.286.21.2703.
[277]
ElyEW, MargolinR, FrancisJ, et al. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) [J]. Crit Care Med, 2001, 29 ( 7): 1370- 1379.
[278]
Gusmao-FloresD, SalluhJI, Dal-PizzolF, et al. The validity and reliability of the Portuguese versions of three tools used to diagnose delirium in critically ill patients [J]. Clinics (Sao Paulo), 2011, 66 ( 11): 1917- 1922. DOI: 10.1590/S1807-59322011001100011.
[279]
HeoEY, LeeBJ, HahmBJ, et al. Translation and validation of the Korean confusion assessment method for the intensive care unit [J]. BMC Psychiatry, 2011, 11: 94. DOI: 10.1186/1471-244X-11-94.
[280]
LuetzA, HeymannA, RadtkeFM, et al. Different assessment tools for intensive care unit delirium: which score to use? [J]. Crit Care Med, 2010, 38 ( 2): 409- 418. DOI: 10.1097/CCM.0b013e3181cabb42.
[281]
MitasovaA, KostalovaM, BednarikJ, et al. Poststroke delirium incidence and outcomes: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU) [J]. Crit Care Med, 2012, 40 ( 2): 484- 490. DOI: 10.1097/CCM.0b013e318232da12.
[282]
van EijkMM, van den BoogaardM, van MarumRJ, et al. Routine use of the confusion assessment method for the intensive care unit: a multicenter study [J]. Am J Respir Crit Care Med, 2011, 184 ( 3): 340- 344. DOI: 10.1164/rccm.201101-0065OC.
[283]
van EijkMM, van MarumRJ, KlijnIA, et al. Comparison of delirium assessment tools in a mixed intensive care unit [J]. Crit Care Med, 2009, 37 ( 6): 1881- 1885. DOI: 10.1097/CCM.0b013e3181a00118.
[284]
ShiQ, WarrenL, SaposnikG, et al. Confusion assessment method: a systematic review and meta-analysis of diagnostic accuracy [J]. Neuropsychiatr Dis Treat, 2013, 9: 1359- 1370. DOI: 10.2147/NDT.S49520.
[285]
Van RompaeyB, ElseviersMM, Van DromW, et al. The effect of earplugs during the night on the onset of delirium and sleep perception: a randomized controlled trial in intensive care patients [J]. Crit Care, 2012, 16 ( 3): R73. DOI: 10.1186/cc11330.
[286]
Le GuenM, Nicolas-RobinA, LebardC, et al. Earplugs and eye masks vs routine care prevent sleep impairment in post-anaesthesia care unit: a randomized study [J]. Br J Anaesth, 2014, 112 ( 1): 89- 95. DOI: 10.1093/bja/aet304.
[287]
ForemanB, WestwoodAJ, ClaassenJ, et al. Sleep in the neurological intensive care unit: feasibility of quantifying sleep after melatonin supplementation with environmental light and noise reduction [J]. J Clin Neurophysiol, 2015, 32 ( 1): 66- 74. DOI: 10.1097/WNP.0000000000000110.
[288]
SchweickertWD, PohlmanMC, PohlmanAS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial [J]. Lancet, 2009, 373 ( 9678): 1874- 1882. DOI: 10.1016/S0140-6736(09)60658-9.
[289]
NeedhamDM, KorupoluR, ZanniJM, et al. Early physical medicine and rehabilitation for patients with acute respiratory failure: a quality improvement project [J]. Arch Phys Med Rehabil, 2010, 91 ( 4): 536- 542. DOI: 10.1016/j.apmr.2010.01.002.
[290]
Al-AamaT, BrymerC, GutmanisI, et al. Melatonin decreases delirium in elderly patients: a randomized, placebo-controlled trial [J]. Int J Geriatr Psychiatry, 2011, 26 ( 7): 687- 694. DOI: 10.1002/gps.2582.
[291]
HattaK, KishiY, WadaK, et al. Preventive effects of ramelteon on delirium: a randomized placebo-controlled trial [J]. JAMA Psychiatry, 2014, 71 ( 4): 397- 403. DOI: 10.1001/jamapsychiatry.2013.3320.
[292]
Al-QadheebNS, SkrobikY, SchumakerG, et al. Preventing ICU subsyndromal delirium conversion to delirium with low-doseⅣ haloperidol: a double-blind, placebo-controlled pilot study [J]. Crit Care Med, 2016, 44 ( 3): 583- 591. DOI: 10.1097/CCM.0000000000001411.
[293]
FukataS, KawabataY, FujishiroK, et al. Haloperidol prophylaxis for preventing aggravation of postoperative delirium in elderly patients: a randomized, open-label prospective trial [J]. Surg Today, 2017, 47 ( 7): 815- 826. DOI: 10.1007/s00595-016-1441-2.
[294]
FukataS, KawabataY, FujisiroK, et al. Haloperidol prophylaxis does not prevent postoperative delirium in elderly patients: a randomized, open-label prospective trial [J]. Surg Today, 2014, 44 ( 12): 2305- 2313. DOI: 10.1007/s00595-014-0859-7.
[295]
GirardTD, PandharipandePP, CarsonSS,et al. Feasibility, efficacy, and safety of antipsychotics for intensive care unit delirium: the MIND randomized, placebo-controlled trial [J]. Crit Care Med, 2010, 38 ( 2): 428- 437. DOI: 10.1097/CCM.0b013e3181c58715.
[296]
KanekoT, CaiJH, IshikuraT, et al. Prophylactic consecutive administration of haloperidol can reduce the occurrence of postoperative delirium in gastrointestinal surgery [J]. Yonago Acta Med, 1999, 42: 179- 184.
[297]
PageVJ, ElyEW, GatesS, et al. Effect of intravenous haloperidol on the duration of delirium and coma in critically ill patients (Hope-ICU): a randomised, double-blind, placebo-controlled trial [J]. Lancet Respir Med, 2013, 1 ( 7): 515- 523. DOI: 10.1016/S2213-2600(13)70166-8.
[298]
WangW, LiHL, WangDX, et al. Haloperidol prophylaxis decreases delirium incidence in elderly patients after noncardiac surgery: a randomized controlled trial [J]. Crit Care Med, 2012, 40 ( 3): 731- 739. DOI: 10.1097/CCM.0b013e3182376e4f.
[299]
KatznelsonR, DjaianiGN, BorgerMA, et al. Preoperative use of statins is associated with reduced early delirium rates after cardiac surgery [J]. Anesthesiology, 2009, 110 ( 1): 67- 73. DOI: 10.1097/ALN.0b013e318190b4d9.
[300]
MorandiA, HughesCG, ThompsonJL, et al. Statins and delirium during critical illness: a multicenter, prospective cohort study [J]. Crit Care Med, 2014, 42 ( 8): 1899- 1909. DOI: 10.1097/CCM.0000000000000398.
[301]
PageVJ, DavisD, ZhaoXB, et al. Statin use and risk of delirium in the critically ill [J]. Am J Respir Crit Care Med, 2014, 189 ( 6): 666- 673. DOI: 10.1164/rccm.201306-1150OC.
[302]
LiptzinB, LakiA, GarbJL, et al. Donepezil in the prevention and treatment of post-surgical delirium [J]. Am J Geriatr Psychiatry, 2005, 13 ( 12): 1100- 1106. DOI: 10.1176/appi.ajgp.13.12.1100.
[303]
SampsonEL, RavenPR, NdhlovuPN, et al. A randomized, double-blind, placebo-controlled trial of donepezil hydrochloride (Aricept) for reducing the incidence of postoperative delirium after elective total hip replacement [J]. Int J Geriatr Psychiatry, 2007, 22 ( 4): 343- 349. DOI: 10.1002/gps.1679.
[304]
WeaverCB, Kane-GillSL, GunnSR, et al. A retrospective analysis of the effectiveness of antipsychotics in the treatment of ICU delirium [J]. J Crit Care, 2017, 41: 234- 239. DOI: 10.1016/j.jcrc.2017.05.034.
[305]
MichaudCJ, BullardHM, HarrisSA, et al. Impact of quetiapine treatment on duration of hypoactive delirium in critically ill adults: a retrospective analysis [J]. Pharmacotherapy, 2015, 35 ( 8): 731- 739. DOI: 10.1002/phar.1619.
[306]
NeufeldKJ, YueJ, RobinsonTN, et al. Antipsychotic medication for prevention and treatment of delirium in hospitalized adults: a systematic review and Meta-analysis [J]. J Am Geriatr Soc, 2016, 64 ( 4): 705- 714. DOI: 10.1111/jgs.14076.
[307]
AlfillePH, MerrittC, ChamberlinNL, et al. Control of perioperative muscle strength during ambulatory surgery [J]. Curr Opin Anaesthesiol, 2009, 22 ( 6): 730- 737. DOI: 10.1097/ACO.0b013e328331d545.
[308]
NortonM, XaráD, ParenteD, et al. Residual neuromuscular block as a risk factor for critical respiratory events in the post anesthesia care unit[J]. Rev Esp Anestesiol Reanim, 2013, 60 ( 4): 190- 196. DOI: 10.1016/j.redar.2012.12.011.
[309]
PriceDR, MikkelsenME, UmscheidCA, et al. Neuromuscular blocking agents and neuromuscular dysfunction acquired in critical illness: a systematic review and Meta-analysis [J]. Crit Care Med, 2016, 44 ( 11): 2070- 2078. DOI: 10.1097/CCM.0000000000001839.
[310]
NanasS, KritikosK, AngelopoulosE, et al. Predisposing factors for critical illness polyneuromyopathy in a multidisciplinary intensive care unit [J]. Acta Neurol Scand, 2008, 118 ( 3): 175- 181. DOI: 10.1111/j.1600-0404.2008.00996.x.
X
选择其他平台 >>
分享到